На прямой "а" Отложим отрезок АВ, равный данной стороне. Из точки В, как из центра, проведем окружность радиуса R=AB. Разделим отрезок АВ пополм, отметим середину отрезка точкой D и из полученной точки D как из центра проведем окружность радиуса r = CD (равного данной медиане). На пересечении этой окружности с окружностью радиуса R отметим точку С. Соединив точки А,В и С получим искомый треугольник АВС.
Доказательство:
В треугольнике АВС стороны АВ и АС равны по построению, а отрезок CD является медианой, так как точка D делит сторону АВ пополам. Следовательно треугольник АВС равнобедренный с медианой, проведенной к боковой стороне, равной данной.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Построение:
На прямой "а" Отложим отрезок АВ, равный данной стороне. Из точки В, как из центра, проведем окружность радиуса R=AB. Разделим отрезок АВ пополм, отметим середину отрезка точкой D и из полученной точки D как из центра проведем окружность радиуса r = CD (равного данной медиане). На пересечении этой окружности с окружностью радиуса R отметим точку С. Соединив точки А,В и С получим искомый треугольник АВС.
Доказательство:
В треугольнике АВС стороны АВ и АС равны по построению, а отрезок CD является медианой, так как точка D делит сторону АВ пополам. Следовательно треугольник АВС равнобедренный с медианой, проведенной к боковой стороне, равной данной.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.