К перво задаче: катет равен 15 т.к в треугольнике есть угол в 30 градусов, а в прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы то есть-30/2=15 ко второй задаче один угол так же будет 30 градусов т.к 180-(В+С)= 180 -150=30градусов (А); в маленьком треугольнике возьмем АСС1 гипотенуза АС так как из проведенной высоты к основанию получили угол 90 градусов(против большего угла большая сторона) угол А 30 градусов СС1 катет против угла в 30 градусов = 2СС1=АС , 2*2=4 АС=4 должно
Е - прямой угол и равен 90°, F=180°-(E+D)=180°-(90°+20°)=180°-110°=70°;
(рис. 3) по свойству равнобедренного треугольника (MK=MN по условию) К=N, K+N=180°-M=180°-50°=130°, K=N=130°:2=65°;
(рис. 4) по свойству равнобедренного треугольника (CD=AD по условию) С=А=30°, D=180°-(C+A)=180°-(30°+30°)=180°-60°=120°;
(рис. 5) по свойству равнобедренного треугольника (AB=DB по условию) А=D, В - прямой угол и равен 90°, A+D=180°-B=180°-90°=90°, A=D=90°:2=45°;
(рис. 6) по свойству равностороннего треугольника (КС=СК=КЕ по условию) К=С=Е=180°:3=60°;
(рис.7) по свойству равнобедренного треугольника (BD=CD по условию) В=С, D=B+C, так как D - внешний угол, а его величина равна сумме двух несмежных с ним внутренних углов треугольника, 70°=В+С, В=С=70°:2=45°, D=180°-(B+C)=180°-45°×2=180°-90°=90°;
(рис. 8) NAP - смежный угол с А, поэтому А+150°=180°, значит А=180°-150°=30°, N=180°-(F+A)=180°-(70°+30°)=180°-100°=80°.
Объяснение: теорема о сумме углов треугольника, свойство равнобедренного треугольника, смежные углы, внутренние и внешние углы треугольника.
ко второй задаче один угол так же будет 30 градусов т.к 180-(В+С)= 180 -150=30градусов (А); в маленьком треугольнике возьмем АСС1 гипотенуза АС так как из проведенной высоты к основанию получили угол 90 градусов(против большего угла большая сторона) угол А 30 градусов СС1 катет против угла в 30 градусов = 2СС1=АС , 2*2=4
АС=4 должно
По теореме о сумме углов треугольника найдем неизвестные углы:
(рис. 1) С=180°-(А+В)=180°-(50°+60°)=180°-110°=70°;
Е - прямой угол и равен 90°, F=180°-(E+D)=180°-(90°+20°)=180°-110°=70°;
(рис. 3) по свойству равнобедренного треугольника (MK=MN по условию) К=N, K+N=180°-M=180°-50°=130°, K=N=130°:2=65°;
(рис. 4) по свойству равнобедренного треугольника (CD=AD по условию) С=А=30°, D=180°-(C+A)=180°-(30°+30°)=180°-60°=120°;
(рис. 5) по свойству равнобедренного треугольника (AB=DB по условию) А=D, В - прямой угол и равен 90°, A+D=180°-B=180°-90°=90°, A=D=90°:2=45°;
(рис. 6) по свойству равностороннего треугольника (КС=СК=КЕ по условию) К=С=Е=180°:3=60°;
(рис.7) по свойству равнобедренного треугольника (BD=CD по условию) В=С, D=B+C, так как D - внешний угол, а его величина равна сумме двух несмежных с ним внутренних углов треугольника, 70°=В+С, В=С=70°:2=45°, D=180°-(B+C)=180°-45°×2=180°-90°=90°;
(рис. 8) NAP - смежный угол с А, поэтому А+150°=180°, значит А=180°-150°=30°, N=180°-(F+A)=180°-(70°+30°)=180°-100°=80°.
Объяснение: теорема о сумме углов треугольника, свойство равнобедренного треугольника, смежные углы, внутренние и внешние углы треугольника.