Поскольку a1b и bc перпендикулярны, то перпендикулярны, также, аb и bc, потому, что a1b и аb лежат в одной плоскости. Из чего следует, что основанием параллелепипеда является прямоугольник, по определению. Все углы, вершины угла, параллелепипеда прямые, значит это прямоугольный параллелепипед. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений. d=√144+16+9=13 см. Площадь поверхности параллелепипеда = 12*4*2+12*3*2+4*3*2= 192 см²
аb и bc, потому, что a1b и аb лежат в одной плоскости. Из чего следует, что основанием параллелепипеда является прямоугольник, по определению.
Все углы, вершины угла, параллелепипеда прямые, значит это прямоугольный параллелепипед.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
d=√144+16+9=13 см.
Площадь поверхности параллелепипеда = 12*4*2+12*3*2+4*3*2= 192 см²
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.