m=0,5*√(2а²+2b²-c²), где а и b- боковые стороны, с- сторона, к которой медиана проведена.
Произведя вычисления, получим длину медианы 5 см.
Но, обратив внимание на отношение сторон 6:8:10=3:4:5, увидим, что данный треугольник - египетский, следовательно, прямоугольный с прямым углом В, АС в нем - гипотенуза.
Медиана прямоугольного треугольника из прямого угла равна половине гипотенузы.
обозначим точку пересечения секущей с m буквой о, а биссектрису большего угла буквой n.
оn делит его на два равных угла, и половина его с острым углом составляет
94 градуса.
отсюда вторая половина ( половина закрашенного розовым цветом угла) равна 180 - 94=86 градусов.
весь тупой угол равен 86*2=172 градуса.
с острым углом он составляет развернутый угол и поэтому
острый угол равен 8 градусов.
так как прямые m и n параллельны, секущая со второй прямой образует углы той же градусной меры.
т.е. тупые углы равны 172 градуса, острые - 8 градусов.
Формула медианы треугольника
m=0,5*√(2а²+2b²-c²), где а и b- боковые стороны, с- сторона, к которой медиана проведена.
Произведя вычисления, получим длину медианы 5 см.
Но, обратив внимание на отношение сторон 6:8:10=3:4:5, увидим, что данный треугольник - египетский, следовательно, прямоугольный с прямым углом В, АС в нем - гипотенуза.
Медиана прямоугольного треугольника из прямого угла равна половине гипотенузы.
m=10:2=5 см
Проверка:
АВ+ВМ+МА=6+5+5=16 см ( периметр треугольника АВМ)
Ещё один
ВМ - медиана и делит сторону АС пополам.
СМ=АМ=10:2=5 ( см)
Р Δ АВМ=16 см
Р Δ АВМ=ВМ+АМ+АВ
16= ВМ+5+6
ВМ=16-11=5 ( см)
Объяснение: