В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
DВ = 21,65см
Объяснение:
Проведём радиусы ОА⊥АВ, ОС⊥ВD и ОЕ⊥DЕ, а также соединим центр окружности О с точками В и D. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСD и ОЕD.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСD = ΔОЕD (сторона ОD - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СD = DЕ = у(обозначение у для простоты письма)
Нам нужно найти DВ = ВС + СD = х + у
Длина ломаной АВDС = АВ + ВС + СD + DЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)