A = 5 см, b = 6 см, c = 7 см Проверим. По теореме косинусов cos(A) = (b²+c²-a²)/(2bc) = (6²+7²-5²)/(2*6*7) = 60/(2*6*7) = 5/7 A = arccos(5/7) Часто в математических задачах это уже может считаться ответом. Если угол и его косинус из табличных - то надо писать значение. Если же угол - трансцендентное число - то его вычисление не обязательно. Но можно и вычислить :) Приближённо. A = arccos(5/7) ≈ 44,42° cos(B) = (5²+7²-6²)/(2*5*7) = 38/(2*5*7) = 19/35 B = arccos(19/35) ≈ 57,12° cos(C) = (5²+6²-7²)/(2*5*6) = 12/(2*5*6) = 1/5 C = arccos(1/5) ≈ 78,46°
Проверим.
По теореме косинусов
cos(A) = (b²+c²-a²)/(2bc) = (6²+7²-5²)/(2*6*7) = 60/(2*6*7) = 5/7
A = arccos(5/7)
Часто в математических задачах это уже может считаться ответом. Если угол и его косинус из табличных - то надо писать значение. Если же угол - трансцендентное число - то его вычисление не обязательно. Но можно и вычислить :) Приближённо.
A = arccos(5/7) ≈ 44,42°
cos(B) = (5²+7²-6²)/(2*5*7) = 38/(2*5*7) = 19/35
B = arccos(19/35) ≈ 57,12°
cos(C) = (5²+6²-7²)/(2*5*6) = 12/(2*5*6) = 1/5
C = arccos(1/5) ≈ 78,46°
учитывая тот факт, что сумма противоположных углов во вписанном четырёхугольнике равна π, а cos(π-α) = -cos(α)
d² = 1² + 4² - 2*1*4*cos(α)
d² = 2² + 3² + 2*2*3*cos(α)
---
d² = 1 + 16 - 8*cos(α)
d² = 4 + 9 + 12*cos(α)
---
d² = 17 - 8*cos(α)
d² = 13 + 12*cos(α)
вычтем из второго первое
0 = 13 + 12*cos(α) - 17 + 8*cos(α)
4 = 20*cos(α)
cos(α) = 1/5
---
d² = 17 - 8*cos(α)
d² = 17 - 8/5 = 85/5 - 8/5 = 77/5
d = √(77/5)