1. В треугольниках ABC и DEK проведены высоты BH и EM. Известно, что BH = EM, а сторона AC в 8 раз больше стороны DK. Площадь треугольника DEK равна 4. Найдите площадь треугольника ABC
2. Чему равна площадь ромба, диагонали которого равны 9 см и 12 см?
3. Площадь равнобедренного прямоугольного треугольника равна 50. Найдите сумму его катетов
3. Площадь прямоугольного треугольника равна 30, а один катет равен 6. Найдите второй катет
4. Найдите площадь треугольника ABC с высотой CF, если AB = 15см, CF = 6 см
3.Пусть угол ВАО = å, тогда угол DAO тоже å
Пусть угол АВО = b, тогда угол СВО тоже b
У параллелограмма сумма двух соседствующих углов = 180°
=> 2å + 2b = 180°, сократим вдвое:
å + b = 90° ( угол ВАО + угол АВО )
Тогда: В треугольнике АВО угол АОВ = 180° - (угол ВАО + угол АВО) = 180° - 90° = 90° что и требовалось доказать.
6.АВСД - параллелограмм, тогда АВ || СД, ВС || АД. АВ=СД ВС=АД
Угол АВР = углу СРВ ( накрест лежащие углы при АВ || СД, ВР секущая )
Тогда треугольник РВС - равнобедренный, тогда ВС = СР = 4
АВ=СД, СД = 4+1=5 тогда они равны 5
АД=ВС, ВС = 4, тогда они равны 4
Периметр: 4 + 4 + 5 + 5 = 18см
9. треугольник АКВ - равнобедренный, тогда угол АКВ = углу АВК = 50°, тогда угол А = 180° - (угол АКВ + угол АВК) = 180° - 100° = 80°
Две соседствующие углы в параллелограмме в сумме дают 180°,
тогда угол В = 180° - 80° = 100°.
Противорасположные углы в параллелограмме равны, тогда уголА = углуС = 80°
уголВ = углуД = 100°
ответы: 6)18см
9)уголА = 80°
уголВ = 100°
уголС = 80°
уголД = 100°
1. В треугольниках ABC и DEK проведены высоты BH и EM. Известно, что BH = EM, а сторона AC в 8 раз больше стороны DK. Площадь треугольника DEK равна 4. Найдите площадь треугольника ABC
2. Чему равна площадь ромба, диагонали которого равны 9 см и 12 см?
3. Площадь равнобедренного прямоугольного треугольника равна 50. Найдите сумму его катетов
3. Площадь прямоугольного треугольника равна 30, а один катет равен 6. Найдите второй катет
4. Найдите площадь треугольника ABC с высотой CF, если AB = 15см, CF = 6 см
1.АВС-18
DEK-26