К плоскости, в которой лежит квадрат ABCD, проведён перпендикуляр KB, длина которого равна стороне квадрата. Отметь, какие из перечисленных свойств характеризуют данный треугольник:
1. ΔKDB имеет один тупой угол имеет один прямой угол имеет два одинаковых угла имеет все одинаковые углы имеет все острые углы
2. ΔDAB имеет два одинаковых угла имеет один тупой угол имеет один прямой угол имеет все одинаковые углы имеет все острые углы
3. ΔKAC имеет все одинаковые углы имеет два одинаковых угла имеет один прямой угол имеет все острые углы имеет один тупой угол
Шаг 1. Для удобства описания решения позволю себе обозначить O как O2, F как F1 и E как F2. Шаг 2. Обозначим точку пересечения AB и O1 O2 как D. Шаг 3. Решение будет симметрично относительно прямой AB, поэтому индексы я опускаю. Рассматриваем треугольник OBD: угол D прямой. значит, OD^2 = OB^2 - BD^2. Шаг 4. Рассматриваем треугольник OMD: угол D прямой, значит, OM^2 = OD^2 + MD^2 = OB^2 - BD^2 + MD^2. Шаг 5. Рассматриваем треугольник OMF: угол F прямой, значит, MF^2 = OM^2 - OF^2 = OB^2 - BD^2 + MD^2 - OF^2. Вспоминаем, что OB = OF = R - радиус окружности, поэтому, MF^2 = MD^2 - BD^2. Равенство справедливо как для первой окружности, так и для второй. Осталось подставить соответствующие индексы..
Правило: Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Решение.
Для начала найдем модуль вектора а.
Дано разложение вектора по ортам: a=4i-3k, то есть координаты вектора
равны:
X=0 (так как базовый вектор i отсутствует),
Y=4 и Z=-3.
То есть дан вектор а(0;4;-3).
Тогда его модуль равен:
|a|=√(0²+4²+(-3)²) = √(16+9) = 5.
Вектор (a-b) найдем по теореме косинусов:
|a-b|² = |a|²+|b|²- 2a*b*Cos45 или
|a-b|² = 25+2-2*5*√2*√2/2 = 27-10 ≈ 17.
|a-b| ≈ √17 ≈ 4,1.
Мы нашли модуль (длину) вектора разности векторов а и b.
Но можно найти и его разложение по базовым векторам.
Для этого необходимо найти координаты конца вектора b
относительно начала координат.
Построим на координатной плоскости j,k (координата х отсутствукет)
данные нам вектора а и b и их разность в соответствии с правилом.
Соединим начала векторов в точке 4j (начало вектора а).
Тогда синус угла наклона вектора а относительно оси j будет равен
Sinα = (3/5)=0,6 (отношение j/|a|).
Угол α = arcsin(0,6) ≈ 37°.
Значит угол наклона вектора b относительно оси j будет равен
45°-37°= 8°.
Тогда координаты конца вектора b будут равны
jb = ja-|b|*Cos8 = 4-√2*0,99 ≈ 2,6.
Соответственно, kb = |b|*Sin8 ≈ 0,14.
Начало вектора (a-b) будет иметь координаты (2,6;0,14)
а его конец - (0;-3) - конец вектора а.
Соответственно, координаты вектора (a-b)=(2,6;-3,14) или
(a-b) = 2,6j - 3,14k.
Для проверки найдем модуль вектора
|a-b| = √(2,6²+(-3,14)²)= √(6,76+9,86)≈ 4,1 ед.
Это соответствует ранее найденному значению с учетом округлений.
Шаг 2. Обозначим точку пересечения AB и O1 O2 как D.
Шаг 3. Решение будет симметрично относительно прямой AB, поэтому индексы я опускаю.
Рассматриваем треугольник OBD: угол D прямой. значит, OD^2 = OB^2 - BD^2.
Шаг 4. Рассматриваем треугольник OMD: угол D прямой, значит, OM^2 = OD^2 + MD^2 = OB^2 - BD^2 + MD^2.
Шаг 5. Рассматриваем треугольник OMF: угол F прямой, значит, MF^2 = OM^2 - OF^2 = OB^2 - BD^2 + MD^2 - OF^2.
Вспоминаем, что OB = OF = R - радиус окружности, поэтому, MF^2 = MD^2 - BD^2.
Равенство справедливо как для первой окружности, так и для второй. Осталось подставить соответствующие индексы..
Правило: Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Решение.
Для начала найдем модуль вектора а.
Дано разложение вектора по ортам: a=4i-3k, то есть координаты вектора
равны:
X=0 (так как базовый вектор i отсутствует),
Y=4 и Z=-3.
То есть дан вектор а(0;4;-3).
Тогда его модуль равен:
|a|=√(0²+4²+(-3)²) = √(16+9) = 5.
Вектор (a-b) найдем по теореме косинусов:
|a-b|² = |a|²+|b|²- 2a*b*Cos45 или
|a-b|² = 25+2-2*5*√2*√2/2 = 27-10 ≈ 17.
|a-b| ≈ √17 ≈ 4,1.
Мы нашли модуль (длину) вектора разности векторов а и b.
Но можно найти и его разложение по базовым векторам.
Для этого необходимо найти координаты конца вектора b
относительно начала координат.
Построим на координатной плоскости j,k (координата х отсутствукет)
данные нам вектора а и b и их разность в соответствии с правилом.
Соединим начала векторов в точке 4j (начало вектора а).
Тогда синус угла наклона вектора а относительно оси j будет равен
Sinα = (3/5)=0,6 (отношение j/|a|).
Угол α = arcsin(0,6) ≈ 37°.
Значит угол наклона вектора b относительно оси j будет равен
45°-37°= 8°.
Тогда координаты конца вектора b будут равны
jb = ja-|b|*Cos8 = 4-√2*0,99 ≈ 2,6.
Соответственно, kb = |b|*Sin8 ≈ 0,14.
Начало вектора (a-b) будет иметь координаты (2,6;0,14)
а его конец - (0;-3) - конец вектора а.
Соответственно, координаты вектора (a-b)=(2,6;-3,14) или
(a-b) = 2,6j - 3,14k.
Для проверки найдем модуль вектора
|a-b| = √(2,6²+(-3,14)²)= √(6,76+9,86)≈ 4,1 ед.
Это соответствует ранее найденному значению с учетом округлений.