К плоскости, в которой лежит квадрат ABCD , проведён перпендикуляр KB такой же длины, как сторона квадрата.
Отметь, какие из вариантов в ответах характеризуют данный треугольник:
1. ΔKDB
имеет один прямой угол
имеет один тупой угол
имеет два одинаковых угла
имеет все одинаковые углы
имеет все острые углы
2. ΔABC
имеет все одинаковые углы
имеет один прямой угол
имеет два одинаковых угла
имеет один тупой угол
имеет все острые углы
3. ΔKCD
имеет все острые углы
имеет два одинаковых угла
имеет все одинаковые углы
имеет один тупой угол
имеет один прямой угол
AD^2=AB^2+BD^2-2*AB*BD*cos120=2*AB^2+2*AB^2*cos60=6*256+3*256=9*256AD=3*16=48МОЖНО ЕЩЕ ПРОЩЕ.Из точки В опустить перпендикуляр на AD, пусть будет ВК и тогда треуг. ACB=треуг. ABK(по гипетенузе и острому углу) и получим AC=AK=24, тогда AD=48( высота в равнобедр.треуг. является медианой.)ответвших AB=24/sin60=16*sqrt(3), AB=BD, угол ABD=120гр. пО ТЕОРЕМЕ КОСИНУСОВ AD^2=AB^2+BD^2-2*AB*BD*cos120=2*AB^2+2*AB^2*cos60=6*256+3*256=9*256AD=3*16=48МОЖНО ЕЩЕ ПРОЩЕ.Из точки В опустить перпендикуляр на AD, пусть будет ВК и тогда треуг. ACB=треуг. ABK(по гипетенузе и острому углу) и получим AC=AK=24, тогда AD=48( высота в равнобедр.треуг. является медианой
за такую задачу мало хотяби 10 но ответ я дам
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см