К плоскости α проведена наклонная AB (A∈α). Длина наклонной равна 22 см, наклонная с плоскостью образует угол 30°. Вычисли, на каком расстоянии от плоскости находится точка B.
Расстояние от точки B до плоскости равно −−−−−√ см.
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8
Объяснение:
бічна сторона рівнобедреного трикутника дорівнює 17см, а висота проведена до основи - 8см. Получим треугольник прямоугольный с катетом 8 см, а гипотенузой 17 см.(получается два равных треугольника, будем рассматривать один из них). По теореме Пифагора найдем второй катет: 17²-8²=289-64=225=15².
Отметим угол при основании α, Противолежащим катетом углу α будет
катет 8см, а прилежащим к углу α катетом будет катет 15 см, гипотенуза 17 см. по определению тригонометрических функций :
sin α= 8/17
cos α=15/17
tg α=8/15
ctg α=15/8