В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
andrii213
andrii213
25.03.2023 23:51 •  Геометрия

К окружности проведены касательная и секущая, проходящая через центр окружности. Длина касательной в два раза меньше длины секущей. Найдите отношение длины касательной к длине радиуса.​

Показать ответ
Ответ:
makhovak007
makhovak007
15.10.2020 15:23

К окружности проведены касательная и секущая, проходящая через центр окружности. Длина касательной в два раза меньше длины секущей. Найдите отношение длины касательной к длине радиуса.​

Объяснение:

По условию 2АМ=МС. Пусть радиус окружности r. Нужно найти \frac{AM}{r} .

" Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC2 = MA•MB.  "

АМ²=МВ*МС , но длина отрезка МВ=МС-2r  ,

АМ²=( МС-2r)*2АМ |: АМ  ,    МС=2АМ  ,

АМ=(2АМ-2r)*2,

3АМ=4r      ⇒ \frac{AM}{r} =\frac{4}{3} .


К окружности проведены касательная и секущая, проходящая через центр окружности. Длина касательной в
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота