В равнобокой трапеции АВСD биссектриса угла А , делит сторону ВС на отрезки ВК и КС . Найдите периметр трапеции, если известно, что АВ=8см и ВК в 2 раза больше чем КС, а верхнее основание меньше нижнего на 6 см.
Объяснение:
ABCD -трапеция , АВ=ВС=8 см . Т.к. АК-биссектриса ⇒∠ВАК=∠DAК и ∠ВАК=∠ВКА как накрест лежащие при ВС||AD, АК-секущая.Поэтому ΔАВК-равнобедренный ( по признаку равнобедренного треугольника) ⇒АВ=ВК=8 (см).
В равнобокой трапеции АВСD биссектриса угла А , делит сторону ВС на отрезки ВК и КС . Найдите периметр трапеции, если известно, что АВ=8см и ВК в 2 раза больше чем КС, а верхнее основание меньше нижнего на 6 см.
Объяснение:
ABCD -трапеция , АВ=ВС=8 см . Т.к. АК-биссектриса ⇒∠ВАК=∠DAК и ∠ВАК=∠ВКА как накрест лежащие при ВС||AD, АК-секущая.Поэтому ΔАВК-равнобедренный ( по признаку равнобедренного треугольника) ⇒АВ=ВК=8 (см).
Тогда КС=8/2=4 ( см) , ВС=8+4=12 (см)
Поэтому AD=12+6=18 (см).
Р=2*8+12+18=46 (см)
Так как точка ВМ – медиана, то точка М – середина стороны АС и СМ=АМ=9 см, тогда АС=СМ+АМ=9+9=18 см;
МК//ВС по условию;
Тогда МК – средняя линия ∆АВС, так как проходит через середину одной из сторон треугольника и параллелен другой.
Исходя из этого: АК=ВК=8 см.
Тогда точка К – середина АВ.
NK//AC по условию
Следовательно NK – средняя линия ∆АВС, так как проходит через середину одной из сторон треугольника и параллелен другой.
Следовательно CN=BN=7 см, NK=0,5*AC=0,5*18=9 см.
P(AKNC)=AK+KN+NC+AC=8+9+7+18=42 см.
ответ: 42 см