В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Исследовать функцию y=f(x) по графику
1. Область определения функции
D (f) = [-4; 2]
2. Множество значений функции
E (f) = [-3; 2,5]
3. Нули функции
x₁ = -3; x₂ = -1; x₃ = 1
4. Пересечение с осью Oy - точка (0; 2,5)
5. Точки экстремумов
x = -2 - точка локального минимума функции
x = 0 - точка максимума функции
6. Экстремумы функции
y = -2 - локальный минимум функции
y = 2,5 - максимум функции
7. Промежутки монотонности функции
Функция убывает на промежутках [-4; -2] и [0; 2]
Функция возрастает на промежутке x∈[-2; 0]
8. Промежутки знакопостоянства функции
y > 0 при x ∈ [-4; -3) ∪ (-1; 1)
y < 0 при x ∈ (-3; -1) ∪ (1; 2]
9. Наименьшее значение функции y=-3 при x=2
Наибольшее значение функции в точке максимума
y = 2,5 при x = 0
10. Функция не периодическая.
11. Функция общего вида ( не является ни чётной, ни нечётной).
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.