1)Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2)Перпендикулярность прямых и плоскостей в пространстве С понятием перпендикулярности прямой и плоскости мы встречаемся ежедневно. Например, мачты освещения устанавливаются перпендикулярно поверхности земли. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.
3)Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.
4) Угол между прямой и плоскостью - угол между прямой и ее проекцией в данной плоскости
5) две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения плоскостей, пересекает их по перпендикулярным прямым. Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
6)Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
d² = a² + b² + c²
Доказательство:
Все грани прямоугольного параллелепипеда - прямоугольники.
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
1)Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2)Перпендикулярность прямых и плоскостей в пространстве С понятием перпендикулярности прямой и плоскости мы встречаемся ежедневно. Например, мачты освещения устанавливаются перпендикулярно поверхности земли. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.
3)Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.
4) Угол между прямой и плоскостью - угол между прямой и ее проекцией в данной плоскости
5) две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения плоскостей, пересекает их по перпендикулярным прямым. Признак перпендикулярности плоскостей. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
6)Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
d² = a² + b² + c²
Доказательство:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔABD: ∠BAD = 90°, по теореме Пифагора
d₁² = a² + b²
ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора
d² = d₁² + c² = a² + b² + c²
d² = a² + b² + c²
Доказанная теорема - пространственная теорема Пифагора.
Объяснение:
Пикча к последнему
Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3)
Известно, что:
R=a^2/sqr(4a^2-b^2)
Подставив значение b, получим: R=a
Отсюда: АВ=2 см
Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда:
r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.