Известно, что точка пересечения серединных перпендикуляров сторон AB и BC треугольника ABC находится на стороне AC.
1. Докажи, что AD=CD:
точка D как точка пересечения серединных перпендикуляров сторон AB и CB
от конечных точек этих сторон.
Если AD = и = , следовательно,
=
.
2. Определи вид треугольника ADB:
равнобедренный
разносторонний
равносторонний
нельзя определить
прямоугольный
3. Определи вид треугольника CDB:
равнобедренный
разносторонний
равносторонний
нельзя определить
прямоугольный
4. Примени соответственное свойство углов и докажи, что∡KBM=∡KAD+∡MCD:
∡ KAD = ∡ K
;
∡ MCD = ∡ M
.
5. Определи вид треугольника ABC:
разносторонний
равнобедренный
равносторонний
прямоугольный
нельзя определить
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .