Известно, что точка пересечения серединных перпендикуляров сторон ab и bc треугольника abc находится на стороне ac. 1. докажи, что ad=cd: точка d как точка пересечения серединных перпендикуляров сторон ab и cb от конечных точек этих сторон. если ad= и = , следовательно, = . 2. определи вид треугольника adb: равносторонний разносторонний прямоугольный нельзя определить равнобедренный 3. определи вид треугольника cdb: равносторонний разносторонний прямоугольный нельзя определить равнобедренный 4. примени соответственное свойство углов и докажи, что∡kbm=∡kad+∡mcd: ∡kad=∡k ∡mcd=∡m 5. определи вид треугольника abc: равнобедренный равносторонний нельзя определить разносторонний прямоугольный
Есть теорема о том, что Медианы треугольника делят треугольник на 6 равновеликих треугольников. Поэтому можно сразу сказать, что искомая площадь равна 1/6 площади исходного треугольника.
_______
В ∆АВВ1 и ∆В1ВС основания равны, высота общая. По формуле S=a•h/2 их площади равны. ⇒ S∆ ABB1=1/2 S∆ ABC.
По т. о медианах треугольника точка пересечения двух его медиан делит каждую из этих медиан в отношении 2:1, считая от вершины треугольника.
⇒ в ∆ АОВ1 основание ОВ1 в два раза меньше основания ВО в ∆ АОВ.
Высоты обоих треугольников, проведенные к основаниям, совпадают. Отношение площадей треугольников с равными высотами равно отношению длин их оснований.
⇒S∆АОВ1:S∆AOB=1/2 , и площадь треугольника АОВ1 равна половине площади ∆ АОВ, или 1/3 половины площади ∆ АВО.
А т.к. S ∆ ABB1=1/2 S ∆ ABC, то S ∆ АОВ1=1/6 площади ∆ АВС=Q/6
Пусть <C1BA1=α. В прямоугольном треугольнике ВС1С угол ВСС1
равен 90-α. Но <C1MA1 - центральный и равен 2<BCC1, так как <BCC1 вписанный и опирается на ту же дугу, что и центральный. Итак, α=2*(90-α), отсюда α=180-2α и α=60°.
Значит <BCC1 и <BAA1 равны по 30°
В прямоугольных треугольниках ВС1С и ВА1А катеты, лежащие против углов 30°, равны половине гипотенузы.
Значит ВС1=(1/2)*ВС =ВL (так как L - середина ВС), а
ВА1=(1/2)*АВ=ВК (по такой же причине).
ВК+С1К=ВL (1)
BL-A1L=BK. (2)
Подставим (2) в (1):
BL-A1L+С1К=ВL. Или С1К=А1L.
Что и требовалось доказать.