теорема. прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.
рассмотрим следующий рисунок.
ah - перпендикулярен плоскости α. am это наклонная в плоскости α; a - прямая, проведенная в плоскости α через точку м перпендикулярно к проекции hm наклонной. теперь, докажем, что прямая а перпендикулярна ам. для этого рассмотрим плоскость amh.
по условию прямая а перпендикулярна нм. также прямая а перпендикулярна ан, так как ан перпендикулярна плоскости α. прямые нм и ан принадлежат плоскости анм и пересекаются. из этих трех пунктов следует, что прямая а перпендикулярна плоскости амн, значит, она перпендикулярна любой прямой, которая принадлежит плоскости амн.
так как прямая ам принадлежит плоскости амн, значит прямая a и прямая ам перпендикулярны между собой. что и требовалось доказать.
так как в теореме присутствуют три перпендикуляра, ан, нм и ам, теорема называется теоремой о трех перпендикулярах. все три прямых угла показаны на рисунке, который в начале доказательства. помимо основной теоремы о трех перпендикулярах, существует и обратная теорема о трех перпендикулярах.
обратная теорема
прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.
. отрезок ad перпендикулярен к плоскости равнобедренного треугольника авс. известно, что ав = ас = 5см, вс = 6 см, ad = 12 см. найти расстояние от точки а до прямой вс.
решение.
пусть точка е это середина вс. тогда вс будет перпендикулярным ае. то есть ае будет расстояние от точки а до прямой вс.
еа является проекцией de на плоскость авс. ае перпендикулярен вс, а следовательно по теореме о трех перпендикулярах de будет перпендикулярен bc. получаем, что de - это расстояние от точки d до отрезка bc. теперь будем определять ae.
ве = (1/2)*вс = 3 см.
так как треугольник аве прямоугольный, то можем по теореме пифагора найти ае.
теорема. прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.
рассмотрим следующий рисунок.
ah - перпендикулярен плоскости α. am это наклонная в плоскости α; a - прямая, проведенная в плоскости α через точку м перпендикулярно к проекции hm наклонной. теперь, докажем, что прямая а перпендикулярна ам. для этого рассмотрим плоскость amh.
по условию прямая а перпендикулярна нм. также прямая а перпендикулярна ан, так как ан перпендикулярна плоскости α. прямые нм и ан принадлежат плоскости анм и пересекаются. из этих трех пунктов следует, что прямая а перпендикулярна плоскости амн, значит, она перпендикулярна любой прямой, которая принадлежит плоскости амн.
так как прямая ам принадлежит плоскости амн, значит прямая a и прямая ам перпендикулярны между собой. что и требовалось доказать.
так как в теореме присутствуют три перпендикуляра, ан, нм и ам, теорема называется теоремой о трех перпендикулярах. все три прямых угла показаны на рисунке, который в начале доказательства. помимо основной теоремы о трех перпендикулярах, существует и обратная теорема о трех перпендикулярах.
обратная теорема
прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.
. отрезок ad перпендикулярен к плоскости равнобедренного треугольника авс. известно, что ав = ас = 5см, вс = 6 см, ad = 12 см. найти расстояние от точки а до прямой вс.
решение.
пусть точка е это середина вс. тогда вс будет перпендикулярным ае. то есть ае будет расстояние от точки а до прямой вс.
еа является проекцией de на плоскость авс. ае перпендикулярен вс, а следовательно по теореме о трех перпендикулярах de будет перпендикулярен bc. получаем, что de - это расстояние от точки d до отрезка bc. теперь будем определять ae.
ве = (1/2)*вс = 3 см.
так как треугольник аве прямоугольный, то можем по теореме пифагора найти ае.
ае^2 = ab^2-be^2 = 25-9 = 16, следовательно, ае = 4 см.
ответ. 4 см.
̫͍F̥̼F͈̫̼̤̙̬̹̲̰͇̘̫̖F͔̱̤͈̜͎̮̮̬̙͓͚̥̹͍͖̝̗F͓̤͎͓̺̝̠̪̻̫̹̯̥̻͓̝̼̭͚̪F̭̺͎̪͔͚͉̪̥̻̤̫͎̰͚̗ͅͅF̙F͍͕̗̘͈͉͉̠͖͙͍͚̫̮̰͇F͚̩̥̙̱͔̫̪̝F̣̱̩F͖̫̹͉̝̭ͅF̣͙͖̣̞̺̮F̗͕͈̼̲̞̥̭̱͔͕F̦͚̯͎̹͙͍̹̜͇̫F̯͍̳̘͇̙̘̬̞̫͈̪F̰̹͍̹̤͚̥̣F̦̩͇̯̰͈̞̟͉̙͈ͅF͙̯̤̪̬͍̘͎͚̝͚ͅF̙̹̰̘͍͚F̝͚̬̝̳̻F̥̙̹̦̱̙͎͔̗͕̭̖̟͍̝͎͈͉F̳͙̹̳̩͔͎̦ ̘͈̠̹̠̲̰͈̗̭̹̟͎̱̳͍̭̣͔͔
̹̖̰̗̪͓̠̹̺̟̝͈͚͎͖F̲͔͍̮̺͕̱̗̝̜͚̥̰F̜̳̗͎̦̯̗̱F̭̰͖̟͕͚͈͙̲̻̭̲̖̺̼̪͍̥F̰̭͍͎F̼͍͓̺̲̞̯̜͓̦F̹̞̭͔̫̝̦͓̙̰̲̣̺̹̭̠̬̭͔ͅF̱͉̹̠͖̖̖̜͚͙͈̦̪̖̪̯F͓͓͙͙͙͕̫F̬̳̼̠̥ͅF̤͔̫̲̞͕̥̯͕͈̮̲̤͔̣͚̱̱̪̣F̦͉͈̞̬͇̟̲̲̩̫͇͍̦̲̱̱͕̱ͅF̟̙̻̰͍͈̙̦̟̝̬̣͔̭F̦̹̣͙͔͈̪̙̻̻̥F͚̠̯̱͚̦̭͉̲̣̦̬̤̲̰̬FF̪̝̹̤͓̳̩̗͙̻͕͇̼̼͙F͇͓̹̮̠F̟̙̝̱̮̼͈̬̟̤̝̦F͎͎̥̫̱͔̥̼̖̖̤̫̲͙̪F͉͚̱̯̮̟͙ ̥̟̼͔͔̳̙͚̣̖̟̩͓̤
̯̻̬̲̦̲̬̫̟̜͎͙̱̰̜̖F͓͈̩͖̞͖F̮͔̱̗̘̪̞̙̣̦̪̰͕̤F͉̫͓̮͖̖̲̻̟͔F͕̥̤̫̥̭̱̳͔̙̝͕̜̝̩̥͙̳̣ ͙г
̞̖̪͚F̝̗̣͚̲͚͎͈̮͙͉͕F͙͓͎F̟͓̹̦̰̯͈͕̠͉̜͙̺̞̟̝̮̜̠̼F̖̝ ̤͙̮͙̗̭̣̖̱
͔͓̼͖̹̯̲̫̩͇̫͎̘̗̲̰̝̞F̠F̖̦̩̤ͅF̰̹̬̟̼F ̠̟̜̜̺̫
͓͕͓̟F̹͙̮̪̲̩̣̻̥̳̲̩ͅF̙̠͕̬̘̜̖̖̲͉͚̼̗̗F͇̯̭͚͓̟̙̟͍̖̜̫̟͖̪̦̞̣͍͙F̖̗͉͔̖̩͕̪͚͍̘̳̺ ̱͔̱̪͓͈͈̙̰̫͓̪̞̬̥̖̳ͅ
̜͚̼̠̻̯͈F̳̱̥F̥̝͖̜͙̖̗͙͖̦̻̺ͅͅF̖̦̮̬̤̹̱̙̮͔̖͈͔͇F͇͔̘̫̰͕̗̳̜͓̼̖͕̱͚̞ ̪̹̰̠̝
̩̗̖̼̭̭̤̩̤̻̣̟͕̼̪̙̻̱̠F̬̟̗͍̤̥̼̗̙̪̼̘̤͎̞ͅF̰F̙͇͇̞̱̹͚̪̤̦̖͔F̳F͉̖̫͖̙̞̩͉͉̻̯͚͙̥̭̰F̼̘̦̫͉͖̻̹̘͖̦͚̥̙͚ͅF̬͔̪͔̦̰͖̮F͇͖͔̠̥̬͔F̞̥̭͉̫̙̟̻̙̖̦̣̮͚̥̮F̙̺̣̦͚̖̭̬̻̲͈̭͇̠ͅͅͅF̖̮̟̫̙̻͕̤͎̳̥̙F̜͔͈͓̞̬̲͉F̩̜̜̠̠̘̹F͎̣̘͓̙̮͚̥͕͚͔̩̫̝̮͍F̲̤̩̰̤̹̤̣̞̟̬̪̰̤̺̞̜̖̘̤F̪̙̤͕̠̮͉͔̞FF̰̫͙̪̝F̝̘͇͓̪͎̥̰̳̣̻̪̭͉̹̙̖͕̹͍F͙͎̩̺̳̜̱͈̬̹̝͉̦̘̳̠͈F̬̫͉͉̹͉̩̳̦̩̜̯͕̻̘̺̜̳ͅ
͎͙̥̦̗̝̰̗̖ͅF̘F͍̲̳̲̰̮̰͎͍͚̮ͅF͇͇͔̻͚͚̻͙F̜̥̲̱̫F͖͖̤͉̫̪̥̬̫̮̭̻̜͕̞͙̼̥̞F̪̟̮̳̤̩͔͇͈̮̥̹͚̱͉F̠̩͉̮̟̣͕̰ͅF̬͕͓̤F̪̳̰̪̗͉̙̥̦̦͚̗̥F̫͍̳̺͓̪̰F͕̤̝̤̤̲̣̙̣̙͉̲̭̠̭ͅͅF̰̫͚̜̩͍̳̬̼̞̦̘̹ͅͅF̮̼͔̦̜F̳͎̯͕̘̰͙͕̟F͓̟̲͉̥̖̮F̻͔̖͈̯̭̘͕̞͙̝̺ͅF̪F͈̭͉̲͙̘̳̠͓͙̻͇̺̤̗̰̯̪F̣̺̰̖̘͙̹̳̭F̮̩̩̻ ͖̣
̙F͎̞̖̩̝̼̜͇̟͙͉͓̱F̻̳F͖͔̭̠̮͔̹͎F͕̮͎͉̠͈̟͇F̯͖FF̪͕͍̼̗̭F̫͚̺̟̤͎̠͚̩̰̲̥̗̖̮͍F̣̣̖͚̻̳̗̣̖͔͕͕͙F̩̳̫͍̤F̥F̗̮̘͉͉̠͉͓͕F̻̫̝̗̰F͍̺̤̹̞̣̘̭̝̪F̞͉̺̤̗̫̝̯̻̩͔̬F͚̩̗̞̹͔̜̤̗̥̱F͕̤̜͍͉̘̯̰̺̼̰̗̳͉̤̪̪̹̺ͅFF̼͙͕ ͔͕̥̥̫̭̫̳͉̳͙
͍͙͕͇̤̲̫͉̼̯̹͖̻̭̠̲̺̳F̯̬̟̣̩̮̰̱̗͙F̲̻̱F̥̟̗̱̮̯̥͍͉̩̼̞̟̼̠̜̬̘̬F̝̙̙̱̺̫͈̼ ̘
̦̝͙͍̰̫̳͔̳̝̬̝͈̲̻F̝͍F̖͚̫̲̟͓͉̮̻̙̳F̥͚͍̥̟F̖͉͍̘̖̙͍̤̣̜̥̩͎̳̩͔
͓̪͕͍̫͇̻̥̰̼͈͕̱F̝͉̦͍͇̩̩͍͍̖̪̲̟͔̣̺̱̲F̜͕̠̖̩̠̱̗ͅF̦͖͍̗͖͓̱͖̠̰͔ͅF͓͕̖̹̞̪͓̦̹̯̗͓̥͇ ̜̭͎̙̣̠̫̜͇͈
͖F̳͎̩̙̥̜̲̯͙̜̯̜̱̙̗̲̗̦̲͖F̩͕̻͚͖̞̙̯̱̻͚͕ͅF̻͖͈͙̠ͅF̯̼̣͕̣͇͓̼ ̼̼̹̳̹͔̘͔̻̬̪̞̹
͍̱̠͕͖͓͍FF̹̥̰͉̭̗̪̲̗̟̹̤̩͍͈̱̱̻ͅF̭͓̖͓͕͖̜̟̤̭ͅF̦̺͉͎̖̭̼͍̪̰̺͉͍͈ ̖͎͚̘̘͔̹͓͇̤̤̘̩̘̻
̥̜̬̦̝̯͉̩ͅF̞͎̯̜͙̣̭̥͖̠̞̮F̖̲̻̼F̦̹̤͍͓͖F̬̘̯̳
̦̬̲͙̖̥͓̞͔͚ͅF̺̭̯̟̺͙̪̩̻̠͎͖͎F͖̗̜̜̝͔͙̦͙̪̫̼̫̫̹̦̖̫͕F͕͍̦̜̯̦̲͍̩̝͙̗F̟͙̱͇̯͖̫̥͖̮̠̺͇̙͇ ͓͍͓͚͎̱͖̜̱̞̱