ответ:Оба треугольника прямоугольные,по условию задачи
<R=<C=90 градусов
<SEF=<REF,по условию задачи
Мы знаем,что два угла одного треугольника равны двум углам другого треугольника,следовательно,
<RFE=<SFE
Теперь докажем,что треугольники ERF и ESF равны между собой
ЕF- общая сторона
<RFE=<SFE, только что мы это доказали
<SEF=<REF по условию задачи
По второму признаку равенства треугольников-если сторона и два прилегающих к ней угла одного треугольника равны стороне и двум прилегающим к ней углам другого треугольника,то эти треугольники равны между собой
Треугольники ERF и ESF равны между собой и FR=SF=6,3 cм
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
ответ:Оба треугольника прямоугольные,по условию задачи
<R=<C=90 градусов
<SEF=<REF,по условию задачи
Мы знаем,что два угла одного треугольника равны двум углам другого треугольника,следовательно,
<RFE=<SFE
Теперь докажем,что треугольники ERF и ESF равны между собой
ЕF- общая сторона
<RFE=<SFE, только что мы это доказали
<SEF=<REF по условию задачи
По второму признаку равенства треугольников-если сторона и два прилегающих к ней угла одного треугольника равны стороне и двум прилегающим к ней углам другого треугольника,то эти треугольники равны между собой
Треугольники ERF и ESF равны между собой и FR=SF=6,3 cм
Объяснение:
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!