В равнобедренной трапеции АВСД (АВ=СД) большее основание АД=25, диагональ ВД перпендикулярна АВ (<АВД=90°). Боковая сторона АВ в 1,25 раз больше высоты ВН, опущенной на основание АД: АВ=1,25ВН. Получается, в прямоугольном ΔАВД высота ВН, опущенная из прямого угла. Из прямоугольного ΔАВН ВН=АВ*sin A, откуда sin А=ВН/АВ=ВН/1,25ВН=0,8. Зная синус угла А, в ΔАВД найдем ВД=АД*sin А=25*0,8=20 АВ=√АД²-ВД²=√25²-20²=√225=15 Тогда ВН=15/1,25=12. Найдем АН=√АВ²-ВН²=√15²-12²=√81=9. Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. Значит АН=(АД-ВС)/2. Отсюда ВС=АД-2АН=25-2*9=7 Площадь трапеции S=(АД+ВС)*ВН/2=(25+7)*12/2=192 ответ: 192
Центр окружности лежит на биссектрисе угла. Радиусы окружности, проходящие через точки касания сторон угла с окружностью, будет перпендикулярны к сторонам угла. Таким образом, биссектриса, касательные (стороны угла от вершины до точек касания с окружностью) и радиусы образуют два одинаковых прямоугольных треугольника. И при любом положении угла относительно окружности (при вращении угла вокруг окружности) все размеры этих треугольников будут оставаться неизменными. Следовательно вершина угла опишет окружность , центр которой совпадет с центром заданной окружности, и радиусом равным расстоянию от вершины угла до центра окружности.
Получается, в прямоугольном ΔАВД высота ВН, опущенная из прямого угла.
Из прямоугольного ΔАВН ВН=АВ*sin A,
откуда sin А=ВН/АВ=ВН/1,25ВН=0,8.
Зная синус угла А, в ΔАВД найдем ВД=АД*sin А=25*0,8=20
АВ=√АД²-ВД²=√25²-20²=√225=15
Тогда ВН=15/1,25=12.
Найдем АН=√АВ²-ВН²=√15²-12²=√81=9.
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.
Значит АН=(АД-ВС)/2.
Отсюда ВС=АД-2АН=25-2*9=7
Площадь трапеции S=(АД+ВС)*ВН/2=(25+7)*12/2=192
ответ: 192