Из точки в к окружности проведены касательные вр и вq (p и q - точки касания). найдите длину хорды pq, если длина отрезка bp= 40, а растояние от центра окружности до хорды pq равно 18
Отрезки касательных BP и BQ равны по свойству касатльной проведенной к оружности из одной точки . Значит треугольник BPQ -равнобедренный с боковой стороной 40. Обозначим точку пересечения прямой ВО с окружностью буквой К, с отрезком PQ буквой М. Пусть PM=x, тогда MQ тоже х ( диаметр перпендикулярный хорде делит её пополам) по теореме Пифагора из треугольника OMQ R²=18²+x² Из треугольника PBM BM²= 40²-x²=1600-R²-324=1276-R². Теперь надо применить Свойство касательной и секущей. Произведение секущей на её внешнюю часть равно квадрату касательной. Но выражения очень большие.
Обозначим точку пересечения прямой ВО с окружностью буквой К, с отрезком PQ буквой М.
Пусть PM=x, тогда MQ тоже х ( диаметр перпендикулярный хорде делит её пополам) по теореме Пифагора из треугольника OMQ R²=18²+x²
Из треугольника PBM BM²= 40²-x²=1600-R²-324=1276-R².
Теперь надо применить Свойство касательной и секущей.
Произведение секущей на её внешнюю часть равно квадрату касательной.
Но выражения очень большие.