1. Треуголой АВ в точке касания.
АО - гипотенуза. Катет ОВ=0,5*АО, значит <ВАО=30°, а <ВОА=60° (сумма острых углов треугольника равна 90°).
То же самое и с треугольником АОС, так как АС=АВ (касательные из одной точки равны), а ОС=ОВ - радиус окружности.
Следовательно, <COA=60°, а <BOC=<BOA+<COA=120°.
ответ: <BOC=120°
2. Радиус перпендикулярен касательной в точке касания.
Треугольник АОВ равнобедренный (АО=ВО - дано), значит высота, проведенная к основанию (в точку касания)=медиана
и делит АВ пополам. R=6.
Тогда по Пифагору
АО=√(6²+8²)=10 ед.
3. Периметр треугольника АВС=АМ+МВ+ВN+NC+CK+KA.
Но АМ=АК, BM=BN, CN=CK - как касательные из одной точки.
Значит Pabc=2*5+2*4+2*8=24 ед.
4. Отрезок ОD перпендикулярен касательной CD в точке касания.
Прямоугольные треугольники АКО и CDO подобны по острому углу, так как <DCO=<OAK - накрест лежащие при параллельных СD и AE.
OD=OA=(1/2)*AB=5 как радиусы.
Из подобия имеем: OC/OA=OD/OK=5/4. => ОС=5*5/4= 6,25см.
ответ: ОС=6,25 ед.
Задание 1
Угол 1 = 125 градусов, угол 2 = 55 градусов, угол 3 = 125 градусов
Задание 2
Угол 1 = 75 градусов, угол 2 = 75 градусов, угол 3 = 30 градусов
Объяснение:
На 1 рисунке представлены параллельные прямые
Угол 1 и угол 3 равны как накрест лежащие углы при параллельных прямых
Угол 1 и угол в 125 градусов являются соответственными
Соответственные углы равны, значит угол 1 = 125 градусов и угол 3 = 125 градусов
Угол 2 и угол 1 являются односторонними при параллельных прямых с и d с секущей а
Односторонние углы = 180 градусов
Угол 2 = 180 градусов - 125 градусов = 55 градусов
По рисунку видно, что образованный треугольник является равнобедренным
В равнобедренном треугольнике углы при основании равны
Значит угол 2 = углу 1
Угол 4 и угол 3 являются смежными и в сумме составляют 180 градусов
Следовательно угол 3 = 180 градусов - 150 градусов = 30 градусов
Сумма углов в треугольнике составляет 180 градусов
Угол 1 + угол 2 = 180 градусов - 30 градусов = 150 градусов
Угол 1 = 150 градусов / 2 = 75 градусов
1. Треуголой АВ в точке касания.
АО - гипотенуза. Катет ОВ=0,5*АО, значит <ВАО=30°, а <ВОА=60° (сумма острых углов треугольника равна 90°).
То же самое и с треугольником АОС, так как АС=АВ (касательные из одной точки равны), а ОС=ОВ - радиус окружности.
Следовательно, <COA=60°, а <BOC=<BOA+<COA=120°.
ответ: <BOC=120°
2. Радиус перпендикулярен касательной в точке касания.
Треугольник АОВ равнобедренный (АО=ВО - дано), значит высота, проведенная к основанию (в точку касания)=медиана
и делит АВ пополам. R=6.
Тогда по Пифагору
АО=√(6²+8²)=10 ед.
3. Периметр треугольника АВС=АМ+МВ+ВN+NC+CK+KA.
Но АМ=АК, BM=BN, CN=CK - как касательные из одной точки.
Значит Pabc=2*5+2*4+2*8=24 ед.
4. Отрезок ОD перпендикулярен касательной CD в точке касания.
Прямоугольные треугольники АКО и CDO подобны по острому углу, так как <DCO=<OAK - накрест лежащие при параллельных СD и AE.
OD=OA=(1/2)*AB=5 как радиусы.
Из подобия имеем: OC/OA=OD/OK=5/4. => ОС=5*5/4= 6,25см.
ответ: ОС=6,25 ед.
Задание 1
Угол 1 = 125 градусов, угол 2 = 55 градусов, угол 3 = 125 градусов
Задание 2
Угол 1 = 75 градусов, угол 2 = 75 градусов, угол 3 = 30 градусов
Объяснение:
Задание 1
На 1 рисунке представлены параллельные прямые
Угол 1 и угол 3 равны как накрест лежащие углы при параллельных прямых
Угол 1 и угол в 125 градусов являются соответственными
Соответственные углы равны, значит угол 1 = 125 градусов и угол 3 = 125 градусов
Угол 2 и угол 1 являются односторонними при параллельных прямых с и d с секущей а
Односторонние углы = 180 градусов
Угол 2 = 180 градусов - 125 градусов = 55 градусов
Задание 2
По рисунку видно, что образованный треугольник является равнобедренным
В равнобедренном треугольнике углы при основании равны
Значит угол 2 = углу 1
Угол 4 и угол 3 являются смежными и в сумме составляют 180 градусов
Следовательно угол 3 = 180 градусов - 150 градусов = 30 градусов
Сумма углов в треугольнике составляет 180 градусов
Угол 1 + угол 2 = 180 градусов - 30 градусов = 150 градусов
Угол 1 = 150 градусов / 2 = 75 градусов