В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
даша3643
даша3643
04.04.2023 15:03 •  Геометрия

Из точки к плоскости проведены две наклонные, длины которых равны 23 и 33 см. вычислите расстояние от точки до плоскости, если длины ортогональных проекций наклонных на данную плоскость относятся, как 2: 3.

Показать ответ
Ответ:
2005282
2005282
24.05.2020 09:45

Пусть одна часть х см ТОгда проекции будут 2х см и 3х см. Рассмотрим 2 прямоугольных треугольника и выразим из них расстояние от точки до плоскости Получим 1089-9х*х=529- 4х*х 1089-529= -4х*х +9х*х 560= 5х*х х= 4 корня из 7 см. Найдём длину перпендикуляра 1089-9*112=1089 -1008=81 Значит перпендикуляр 9 см.

0,0(0 оценок)
Ответ:
ArLesya
ArLesya
24.05.2020 09:45

обозначим высоту до точки через h

тогда из прямоугольных треугольников проекции будут равны соответственно

sqrt(23^2 - h^2) и sqrt(33^2 - h^2)

поскольку они относятся как 2:3, составляем уравнение

sqrt(23^2 - h^2) / sqrt(33^2 - h^2) = 2/3

(23^2 - h^2) / (33^2 - h^2) = 4/9

9(23^2 - h^2) = 4(33^2 - h^2)

9*23^2-4*33^2 = (9-4) h^2

h = sqrt((9*23^2-4*33^2) / 5) = 9

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота