В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
777ppp777
777ppp777
26.06.2020 10:42 •  Геометрия

из точки A, взятой вне окружности, проведены касательная AB (B- точка касания) и секущая AD ( C и D - точки пересечения с окружностью, C пренодлежит AD). Найдите угол DAB, если дуга CB = 40°, дуга DB = 100°.​

Показать ответ
Ответ:
DartMatv
DartMatv
19.05.2021 17:30

∠DAB = 30°

Объяснение:

Вписанный угол равен половине дуги, на которую он опирается, значит

∠BCD = 1/2 ∪DB = 1/2 · 100° = 50°

∠BDC = 1/2 ∪CB = 1/2 · 40° = 20°

Угол между касательной и хордой равен половине дуги, заключенной внутри этого угла, значит

∠АВС = 1/2 ∪СВ = 1/2 · 40° = 20°

∠BCD - внешний для треугольника АВС. По свойству внешнего угла

∠BCD = ∠ABC + ∠BAC

∠BAC = ∠BCD - ∠ABC = 50° - 20° = 30°

∠DAB = 30°

Стоит запомнить, что угол между секущими, проведенными из одной точки (или между секущей и касательной, как в данном случае), равен полуразности дуг, заключенных между ними.

∠DAB = 1/2 (∪DB - ∪CB) = 1/2 (100° - 40°) = 1/2 · 60° = 30°


из точки A, взятой вне окружности, проведены касательная AB (B- точка касания) и секущая AD ( C и D
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота