:Из точек C и D лежащих на одной из двух пересекающихся прямых проведены перпендикуляры к этой прямой пересекающие вторую прямую в точках M и K соответственно. а)докажите что CM || DK; б)найдите угол CMK если угол DKM=67°
1. МК - средняя линия треугольника, она параллельна одной из его сторон и равна половине этой стороны. Значит: АС = 2 х МК = 2 х 16 = 32 см 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит: АО = ОС = 16 см 3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора: ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см 4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей. Значит: ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см
Объем пирамиды равен одной трети произведения ее высоты на площадь основания.V=⅓ S∙h Основание правильного шестиугольника состоит из шести правильных треугольников. Площадь правильного треугольника находят по формуле: S=(а²√3):4 S=4√3):4=√3 Площадь правильного шестиугольника в основании пирамиды: S=6√3 Высоту найдем из прямоугольного треугольника АВО: Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна H=ВО=2:ctg (60°)= 2·1/√3=2√3 Можно найти высоту и по т. Пифагора с тем же результатом. V= 2√3∙6 √3:3=12 (кубических единиц)
АС = 2 х МК = 2 х 16 = 32 см
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит:
АО = ОС = 16 см
3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора:
ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см
4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей.
Значит:
ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4 S=4√3):4=√3 Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО: Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3 Можно найти высоту и по т. Пифагора с тем же результатом. V= 2√3∙6 √3:3=12 (кубических единиц)