Исследуемое тело Начальный объём воды V. [см] объём воды и тела V. [см] объём тела V= V, – vo [см] Абсолютная погрешность измерения дv, [см] Латунный цилиндр Стальной цилиндр Металлический шар Шуруп Гайка
Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Начертим треугольник ABC.C=90°.По условию острый угол равен 45°-> второй угол будет тоже 45°.Следовательно AC=CB.. Рассмотрим треугольник ACH.угол А=45°,угол AHC=90(высота же),уголс ACH=45°. Из чего следует,что CH=AH=9,тоже самое проделываем с треугольником CHB.AH=HB=9=>AB=18. Найдём катеты,которые равны,т.е. АВ^2=AC^2+CB^2,пусть AC=x=CB,=> AB^2=2х^2.18^2=2х^2.324=2x^2,x=корень из 162,S(прямоугольное.треугольника)=1/2произведений катетов=>S=1/2AC*CB=(корень из 162*корень из 162)/2=162/2=81
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.