Тебе надо выучить названия углов и их свойства. Если я правильно помню, то например накрест лежащие равны, односторонние в сумме дают 180 градусов и тд. У тебя известны два угла. Тебе надо выяснить, какие они ( накрест лежащие, односторонние или соответственные). Дальше тебе нужно найти им пару.
Вот, например ∠4 + ∠6 = 78°, эти углы накрестлежащие, поэтому ∠4 =∠6 = 78°÷2 = 39°
Потом тебе надо найти вертикальные или смежные углуби если таковые есть:∠2 = ∠4, ∠8 = ∠6эти углы вертикальные,
поэтому ∠2 = 39° и ∠8=39°; ∠1 = ∠3 и ∠7 = ∠5, эти углы вертикальные
∠3 = 180° - ∠4 = 141°, ∠5 = 180° - ∠6 = 141°, так как ∠3 и ∠4, ∠5 и ∠6 - смежные
4. ∠1 = ∠3 и ∠7 = ∠5, так как эти углы вертикальные
Тебе надо выучить названия углов и их свойства. Если я правильно помню, то например накрест лежащие равны, односторонние в сумме дают 180 градусов и тд. У тебя известны два угла. Тебе надо выяснить, какие они ( накрест лежащие, односторонние или соответственные). Дальше тебе нужно найти им пару.
Вот, например ∠4 + ∠6 = 78°, эти углы накрестлежащие, поэтому ∠4 =∠6 = 78°÷2 = 39°
Потом тебе надо найти вертикальные или смежные углуби если таковые есть:∠2 = ∠4, ∠8 = ∠6эти углы вертикальные,
поэтому ∠2 = 39° и ∠8=39°; ∠1 = ∠3 и ∠7 = ∠5, эти углы вертикальные
∠3 = 180° - ∠4 = 141°, ∠5 = 180° - ∠6 = 141°, так как ∠3 и ∠4, ∠5 и ∠6 - смежные
4. ∠1 = ∠3 и ∠7 = ∠5, так как эти углы вертикальные
Объяснение:
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — выпуклый.
Каждый угол четырёхугольника в 2 раза больше предыдущего.
Найти:Меньший угол четырёхугольника (∠А) = ?
Решение:▷ Сумма углов любого четырёхугольника равна 360° ◁
Для удобства расчёта возьмём ∠А за х.
Тогда, по условию задачи —
▸ ∠В = 2*∠А = 2х.
▸ ∠С = 2*∠В = 2*2х = 4х.
▸ ∠D = 2*∠C = 2*4x = 8x.
Логично, что ∠А — меньший угол, так как мы его брали за х.
Составим линейное уравнение и найдём значение х —
∠А+∠В+∠С+∠D = 360°
х+2х+4х+8х = 360°
15х = 360°
х = 24°.
∠А = х = 24°.
ответ:24°.