1. просто прповеди линейкой перпендикуляр и измерь расстояние
2. в треуг против большего угла лежит большая сторона,против меньшего-меньшая.
значит ас-самая длинная сторона
ав-самая короткая
св-средняя
3.да, существует такой признак равенства- по гипотенузе и углу.
4. углы акp и pkм смежные, в сумме дают 180гр. значит
∠pкм= 180-116=64гр
в треуг pкм pk=pм(по усл),значит треуг равнобедренный. в равнобедренном треуг углы при основании равны. ∠к=∠м=64.
ответ: 64
5. 1) внешний угол вершины в и ∠в смежные, в сумме дают 180гр. значит
∠в=180-150=30гр
2)сумма углов треуг =180гр. найдем ∠p
∠p=180-90-30=60гр
3) если pа1- бис-са(по усл), то делит угол пополам, ∠cpa1=∠а1pв=60:2=30гр.
4) рассмотрим треуг pса.
в прямоуг треуг катет, лежащий против угла в 30 гр равен половине гипотенузы. значит са1-половина гипотенузы.
са1= 16:2=8см
ответ: 8
6. 1) найдем угол р. ∠р= 180-114=66гр.
2) пусть ∠т=х
тогда х+50=∠м
сумма углов треуг =180гр, значит
х+х+50+66=180
2х=64
х=32
32гр- ∠т
остальное сам)
Дана трапеция АВСД, ВС = 4 см, АД = 6 см. ВД = 5 см, АС = 6 см.
Проведём отрезок СЕ, равный и параллельный диагонали ВД.
Получим треугольник АСЕ со сторонами 5, 6 и 10 см.
cos (AEC) = (100 + 36 - 25)/(2*10*6) = 111/120 = 37/40.
Угол АЕС = arc cos(37/40) = 22,33165°.
Так как угол АЕС равен углу АДВ, то в равнобедренном треугольнике АВД острый угол трапеции ДАВ равен:
∠ДАВ = (180 - 22,33165)/2 = 78,83418°.
Находим сторону трапеции СД = √(36 + 16 - 2*6*4*(37/40)) = √7,6.
Теперь можно определить угол СДА.
cos(CDA) = (36 + 7.6 - 25)/(2*6*√7,6) = 18,6/(12√7,6) = 1,55√7,6 ≈ 0,562244.
Угол (СДА) = arc cos(1,55√7,6) ≈ 0,9737 радиан или 55,7889 градуса.
1. просто прповеди линейкой перпендикуляр и измерь расстояние
2. в треуг против большего угла лежит большая сторона,против меньшего-меньшая.
значит ас-самая длинная сторона
ав-самая короткая
св-средняя
3.да, существует такой признак равенства- по гипотенузе и углу.
4. углы акp и pkм смежные, в сумме дают 180гр. значит
∠pкм= 180-116=64гр
в треуг pкм pk=pм(по усл),значит треуг равнобедренный. в равнобедренном треуг углы при основании равны. ∠к=∠м=64.
ответ: 64
5. 1) внешний угол вершины в и ∠в смежные, в сумме дают 180гр. значит
∠в=180-150=30гр
2)сумма углов треуг =180гр. найдем ∠p
∠p=180-90-30=60гр
3) если pа1- бис-са(по усл), то делит угол пополам, ∠cpa1=∠а1pв=60:2=30гр.
4) рассмотрим треуг pса.
в прямоуг треуг катет, лежащий против угла в 30 гр равен половине гипотенузы. значит са1-половина гипотенузы.
са1= 16:2=8см
ответ: 8
6. 1) найдем угол р. ∠р= 180-114=66гр.
2) пусть ∠т=х
тогда х+50=∠м
сумма углов треуг =180гр, значит
х+х+50+66=180
2х=64
х=32
32гр- ∠т
остальное сам)
Дана трапеция АВСД, ВС = 4 см, АД = 6 см. ВД = 5 см, АС = 6 см.
Проведём отрезок СЕ, равный и параллельный диагонали ВД.
Получим треугольник АСЕ со сторонами 5, 6 и 10 см.
cos (AEC) = (100 + 36 - 25)/(2*10*6) = 111/120 = 37/40.
Угол АЕС = arc cos(37/40) = 22,33165°.
Так как угол АЕС равен углу АДВ, то в равнобедренном треугольнике АВД острый угол трапеции ДАВ равен:
∠ДАВ = (180 - 22,33165)/2 = 78,83418°.
Находим сторону трапеции СД = √(36 + 16 - 2*6*4*(37/40)) = √7,6.
Теперь можно определить угол СДА.
cos(CDA) = (36 + 7.6 - 25)/(2*6*√7,6) = 18,6/(12√7,6) = 1,55√7,6 ≈ 0,562244.
Угол (СДА) = arc cos(1,55√7,6) ≈ 0,9737 радиан или 55,7889 градуса.