Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
1 на рисунке 2 ответ:
DA=26,1 см, DC= 26,1 см
Пошаговое объяснение:
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Значит ВД=ДС=30(см.),
АД= АС-ДС=40-30=10(см.)
ответ: 10см.;30см.
там цифры немного не правильные