Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
sinB = AC/AB = 40/50 = 8/10 = 0,8
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AC²+BC² ⇒ BC² = AB²-AC²
По формуле разности квадратов:
BC² = (AB-AC)(AB+AC) = (50-40)(50+40) = 10·90 = 10²·3²
BC = 10·3 = 30
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
Объяснение: