З точки, яка віддалена від площини а на 4см , проведено дві похилі , які утворюють з площиною кути 30 і 45 градусів відповідно, а кут між їхніми проекціями дорівнює 150 градусів. Знайдіть відстань між основами похилих!
Прямые DE и SB не пересекаются, не параллельны и не лежат в одной плоскости. Они скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно:
Провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
CE=SE по условию; ЕМ ║ SB и является средней линией ∆ SCB.
Искомый угол – ∠DEM.
Так как все ребра пирамиды равны, её боковые грани - правильные треугольники. Примем длину ребер равной 1.
а) О - середина АС ⇒ ОС/АС = 1/2 ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒ ⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД, а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а) коэффициент подобия этих треугольников к = ВО/СД = 1/2 отношение площадей равно квадрату коэффициента подобия Sboc/Sacd = k² = 1/4 Saobcd = Sboc + Sacd = S из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5 надеюсь правильно
Прямые DE и SB не пересекаются, не параллельны и не лежат в одной плоскости. Они скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно:
Провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
CE=SE по условию; ЕМ ║ SB и является средней линией ∆ SCB.
Искомый угол – ∠DEM.
Так как все ребра пирамиды равны, её боковые грани - правильные треугольники. Примем длину ребер равной 1.
Тогда ЕМ=CM=1/2.
DE=DC•sin60°=√3/2
Из прямоугольного ∆DEM по т.Пифагора найдём DM²
DM²=CM²+DC²=(1/2)²+(√3/2)²=5/4
По т.косинусов
DM²=EM²+DE²-2•EM•DE•cos(DEM)
cosDEM=(DM²-(DE²+EM²)²(-2•DE•EM)
cosDEM=[5/4 - {1/2)²+(√3/2)²}:(-2•(1/2)•√3/2)= - (1/4) •2/√3=-1/2√3
Умножив числитель и знаменатель этой дроби на √3, получим:
ответ arccos=-√3/6
cos∠DEM= -0.2886751345948128812 По калькулятору это ≈ 106°47’43’’
О - середина АС ⇒ ОС/АС = 1/2
ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД
ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒
⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД,
а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а)
коэффициент подобия этих треугольников к = ВО/СД = 1/2
отношение площадей равно квадрату коэффициента подобия
Sboc/Sacd = k² = 1/4
Saobcd = Sboc + Sacd = S
из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5 надеюсь правильно