рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.
Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольник BCD в котором B = D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, ч т д
Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.
рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.
Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу, поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,ч т д
Площадь треугольника равна половине произведение его периметра на радиус вписанной окружности:
С другой стороны площадь можно найти как половина произведения основания на высоту:
Тогда выражение для радиуса вписанной окружности примет вид:
Основание АС нам неизвестно, поэтому введем обозначения: AC=a, AB=BC=b, и составим систему уравнений: Первое уравнение: - периметр треугольника. В качестве второго уравнения рассмотрим теорему Пифагора для прямоугольного треугольника BCD, где DC=а/2, так как BD - высота равнобедренного треугольника, а следовательно, и медиана. Второе уравнение:
Подставляем числовые данные в выражения для радиуса:
рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.
Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольник BCD в котором B = D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, ч т д
Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.
рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.
Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу, поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,ч т д
С другой стороны площадь можно найти как половина произведения основания на высоту:
Тогда выражение для радиуса вписанной окружности примет вид:
Основание АС нам неизвестно, поэтому введем обозначения: AC=a, AB=BC=b, и составим систему уравнений:
Первое уравнение: - периметр треугольника.
В качестве второго уравнения рассмотрим теорему Пифагора для прямоугольного треугольника BCD, где DC=а/2, так как BD - высота равнобедренного треугольника, а следовательно, и медиана.
Второе уравнение:
Подставляем числовые данные в выражения для радиуса:
ответ: 4/3