ГЕОМЕТРИЯ Знайдіть координати точки, у яку перейде точка М (3;-1;-2) у результаті послідовного виконання симетрії відносно початку координат та паралельного перенесення, яке відображає точку А (-3;7;1) у точку А1 (5;1;-2).
1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна
ЗАДАЧИ по теме А Т М О С Ф Е Р А
Высота вашего населенного пункта – 2000 м над уровнем моря. Высчитайте атмосферное давление на данной высоте.
На какую высоту поднялся самолет, если за его бортом температура -30 гр С, а у поверхности Земли +12 гр.С ?
Летчик поднялся на высоту 2 км .Каково атмосферное давление воздуха на этой высоте, если у поверхности Земли оно равнялось 750 мм рт ст?
Какова высота горы, если у ее подножия температура +26 гр.С, а на вершине -10 гр. С ?
Какова высота горы, если у подножия атмосферное давление 765 мм рт ст, а на вершине 720 мм рт ст ?
Какова температура воздуха на Памире, если в июле у подножия она составляет +36 гр.С? Высота Памира 6 км.
1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна
Объяснение: