M=4 дм - апофема усечённой пирамиды. Пусть сторона большего основания равна а, тогда сторона меньшего а/3. Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9. Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3. Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒ 5а²+48а-837=0 а1=-93/5 - отрицательное значение не подходит. а2=9. Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм. h²=m²-b²=4²-3²=7 h=√7 дм. ответ: высота усечённой пирамиды равна √7 дм.
Объяснение: если при основании каждый угол составляет 45°, то этот треугольник прямоугольный, так как сумма углов треугольника составляет 180°- это легко проверить:
180–45–45=90°
Обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Если основание=8, то оно буде являться гипотенузой и поэтому легко вычислить катеты с синуса или косинуса угла, поскольку значение и синуса и косинуса буде одинаковым при величине угла 45°
АС=ВС=АВ×sin45°=8×√2/2=4√2
Площадь прямоугольного треугольника вычисляется по формуле: S=AC×BC/2=
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
ответ: высота усечённой пирамиды равна √7 дм.
ответ: 16см²
Объяснение: если при основании каждый угол составляет 45°, то этот треугольник прямоугольный, так как сумма углов треугольника составляет 180°- это легко проверить:
180–45–45=90°
Обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Если основание=8, то оно буде являться гипотенузой и поэтому легко вычислить катеты с синуса или косинуса угла, поскольку значение и синуса и косинуса буде одинаковым при величине угла 45°
АС=ВС=АВ×sin45°=8×√2/2=4√2
Площадь прямоугольного треугольника вычисляется по формуле: S=AC×BC/2=
=4√2×4√2/2=16×2/2=16см²