1) периметр= 20 см потому что диагонали ромба пересекаются под прямым углом образовывая прямоугольный треугольник , за теоремой Пифагора находим сторону ромба 5 см
площадь считаем за формулой 1/2 диагональ на диагональ
S=1/2×d1×d2=1/2×6×8=24cм²
2) треугольник ACD прямоугольный с углом 30° за свойством угла против угла 30° CD=6 см значит АВ=6 см
у правильной трапеции углы при основе равны , значит угол А равен углу Д равен 60° . Поскольку угол САД равен 30 то угол САВ тоже равен 30
за свойством 2 параллельных прямых и сечной угол АСВ тоже равен 30 тоесть треугольник АСВ равнобедренный и ВС равен 6 см
высота трапеции √27 потому что , если опустить перпендикуляр с точки С на АД то за теоремой Пифагора можно найти высоту
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°
1) периметр= 20 см потому что диагонали ромба пересекаются под прямым углом образовывая прямоугольный треугольник , за теоремой Пифагора находим сторону ромба 5 см
площадь считаем за формулой 1/2 диагональ на диагональ
S=1/2×d1×d2=1/2×6×8=24cм²
2) треугольник ACD прямоугольный с углом 30° за свойством угла против угла 30° CD=6 см значит АВ=6 см
у правильной трапеции углы при основе равны , значит угол А равен углу Д равен 60° . Поскольку угол САД равен 30 то угол САВ тоже равен 30
за свойством 2 параллельных прямых и сечной угол АСВ тоже равен 30 тоесть треугольник АСВ равнобедренный и ВС равен 6 см
высота трапеции √27 потому что , если опустить перпендикуляр с точки С на АД то за теоремой Пифагора можно найти высоту
площадь = (6+12)/2×√27= 9√27 см²
3) и 4) прости, не знаю