2) Проведем высоту из вершины С. Тогда трапеция поделится на прямоугольник ABCH(т.к все углы =90 градусов) и треугольник CHD. Рассмотрим треугольник CHD. В нем:
угол CDH=45
угол CHD=90
=> угол HCD=45(тк сумма углов в треугольнике =180 градусов)
Тк два угла равны, то треугольник равнобедренный (по признаку равнобедренного треугольника)=>HD=CH
Тк BCHD - прямоугольник, то BC=AH=6(по свойству параллелограмма (а любой прямоугольник - это параллелограмм)
HD=AD-AH=12-6=6
=>CH=HD=6
Значит, высота трапеции = 6
Значит, S трапеции ABCD=9*6=54 см
Старалась максимально подробно, рисунок в прикрепленном файле
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
ответ: 54
Объяснение: 1) S трапеции =1/2*h*(BC+AD)
=>S трапеции ABCD=1/2*h*(6+12)=1/2*h*18=9*h
2) Проведем высоту из вершины С. Тогда трапеция поделится на прямоугольник ABCH(т.к все углы =90 градусов) и треугольник CHD. Рассмотрим треугольник CHD. В нем:
угол CDH=45
угол CHD=90
=> угол HCD=45(тк сумма углов в треугольнике =180 градусов)
Тк два угла равны, то треугольник равнобедренный (по признаку равнобедренного треугольника)=>HD=CH
Тк BCHD - прямоугольник, то BC=AH=6(по свойству параллелограмма (а любой прямоугольник - это параллелограмм)
HD=AD-AH=12-6=6
=>CH=HD=6
Значит, высота трапеции = 6
Значит, S трапеции ABCD=9*6=54 см
Старалась максимально подробно, рисунок в прикрепленном файле
Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°.
Соединяем точку А₁ с точкой D.
В треугольнике АА₁D
AA₁=2 м
AD=1 м
∠A₁AD=60°
По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3
A₁D=√3 м
Треугольник A₁AD- прямоугольный
по теореме обратной теореме Пифагора:
АА₁²=AD²+A₁D² 2²=1+( √3 )²
A₁D⊥AD
В основании квадрат, стороны квадрата взаимно перпендикулярны
АС⊥AD
Отсюда AD⊥ плоскости A₁CD
ВС || AD
BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD
По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD
A₁C - высота призмы
A₁C=Н
Из прямоугольного треугольника
A₁DC:
А₁С²=А₁D²-DC²=(√3)²-1=3-1=2
A₁C=Н=√2 м
S(параллелепипеда)=S(осн)·Н=АВ²·Н=1·√2=√2 куб. м