Русский писатель-сатирик, журналист и т.д .Каждый из великих писателей национальной литературы занимает в ней свое особое, только ему принадлежащее место. Главное своеобразие М. Е. Салтыкова-Щедрина в русской литературе заключается в том, что он был и остается в ней крупнейшим представителем социальной критики и обличения. Островский называл Щедрина “пророком” и ощущал в нем “страшную поэтическую силу”.
Салтыков-Щедрин выбрал, как мне кажется, самый сложный жанр литературы — сатиру. Ведь сатира — это вид комического, наиболее беспощадно высмеивающий действительность и, в отличие от юмора, не дающий шанса на исправление.
3. Писатель проявил себя во многих жанрах литературы. Из-под его пера вышли романы, хроники, повести, рассказы, очерки, пьесы. Но наиболее ярко художественный талант Салтыкова-Щедрина выражен в его знаменитых “Сказках”. Сам писатель определил их так: “Сказки для детей изрядного возраста”. Они сочетают в себе элементы фольклора и авторской литературы: сказки и басни. 3. В них наиболее полно отражены жизненный опыт и мудрость сатирика. Несмотря на злободневные политические мотивы, сказки все равно сохраняют все обаяние народного творчества: “В некотором царстве Богатырь родился. Баба-Яга его родила, вспоила, вскормила…” (“Богатырь”).
Многие сказки Салтыков-Щедрин создал путем использования приема иносказания. Эту свою манеру письма автор назвал эзоповским языком по имени древнегреческого баснописца Эзопа, который в давние времена пользовался таким же приемом в своих баснях. Эзопов язык был одним из средств защиты щедринских произведений от терзавшей их царской цензуры.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Русский писатель-сатирик, журналист и т.д .Каждый из великих писателей национальной литературы занимает в ней свое особое, только ему принадлежащее место. Главное своеобразие М. Е. Салтыкова-Щедрина в русской литературе заключается в том, что он был и остается в ней крупнейшим представителем социальной критики и обличения. Островский называл Щедрина “пророком” и ощущал в нем “страшную поэтическую силу”.
Салтыков-Щедрин выбрал, как мне кажется, самый сложный жанр литературы — сатиру. Ведь сатира — это вид комического, наиболее беспощадно высмеивающий действительность и, в отличие от юмора, не дающий шанса на исправление.
3. Писатель проявил себя во многих жанрах литературы. Из-под его пера вышли романы, хроники, повести, рассказы, очерки, пьесы. Но наиболее ярко художественный талант Салтыкова-Щедрина выражен в его знаменитых “Сказках”. Сам писатель определил их так: “Сказки для детей изрядного возраста”. Они сочетают в себе элементы фольклора и авторской литературы: сказки и басни. 3. В них наиболее полно отражены жизненный опыт и мудрость сатирика. Несмотря на злободневные политические мотивы, сказки все равно сохраняют все обаяние народного творчества: “В некотором царстве Богатырь родился. Баба-Яга его родила, вспоила, вскормила…” (“Богатырь”).
Многие сказки Салтыков-Щедрин создал путем использования приема иносказания. Эту свою манеру письма автор назвал эзоповским языком по имени древнегреческого баснописца Эзопа, который в давние времена пользовался таким же приемом в своих баснях. Эзопов язык был одним из средств защиты щедринских произведений от терзавшей их царской цензуры.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²