Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Значит, АВ=А₁В₁=ВС/В₁С₁⇒6/9=8/В₁С₁; В₁С₁=9*8/6=12/см/
6/9=АС/А₁С₁⇒АС=6*18/9=12/см/
Проверим пропорциональность сходственных сторон
АВ/А₁В₁=ВС/В₁С₁=АС/А₁С₁; 6/9=8/12=12/18.
Все отношения после сокращения дают 2/3, значит, найдены неизвестные стороны верно.
ответ:100 см²
Объяснение: В четырехугольник можно вписать окружность ( или круг) тогда и только тогда. когда суммы противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
ВС+АD=АВ+AD=14+11=25 (см).
Высота трапеции равна диаметру вписанной окружности. ⇒ ВН=2r=2•4=8
Площадь трапеции равна произведению высоты и полусуммы оснований.
S=h•(a+b)/2=8•25/2=100 см².
----------------------
Как видим, для нахождения площади отношение оснований трапеции является лишним. Но для нахождения длин сторон пригодится.
Примем коэффициент отношения ВС:АD равным а.
Тогда ВС=2а, АD=3а.
ВС+АD=5a=25 (см. выше). ⇒ а=5. ⇒
ВС=2•5=10 см
АD=3•5=15 см.