1. Опустим высоты ВН и СР.AD-BC=AH+PD.AB>AH (1) и CD>PD (2), ак гипотенузы прямоугольных треугольниковАВН и СDP. Сложив (1) и (2), имеем: АВ+CD>AH+PD.Что и требовалось доказать.2. В треугольниках HBD и PCA BD>HP+PD (1) и AC>HP+AH (2).Сложим (1) и (2): AC+BD>HP+PD+HP+AH, но НР=ВС и PD+HP+AH = AD.Тогда AC+BD>ВС+AD, что и требовалось доказать.3.AD-BC=AH+PD, но АН<AB, a PD<CD тогда тем более AD-BC<AB+СD.Что и требовалось доказать.4. Диагонали трапеции точкой их пересечения образуют два подобных треугольникаВОС и AOD с коэффициентом подобия k=BC/AD. Значит и диагонали точкой пересечения делятся в таком же отношении, а не пополам, что и требовалось доказать.
Против равных углов, в равных тр-ках лежат равные стороны: АД = ВС.
Тр-к АОС = тр-ку ДОВ (ОС=ОД, ОА=ОВ, уг. АОС =уг.ВОД -вертикальные).
Против равных углов, в равных тр-ках лежат равные стороны: АС = ВД.
Тр-к АСД = тр-ку ВДС (АД = ВС, АС = ВД,СД - общая сторона)
Это и требовалось доказать.
б)четырехугольник АДВС - параллелограмм, т.к. АД параллельна и равна СВ, а АС параллельна и равна ВД (это следует из равенства треугольников).
Тогда уг. АСВ = 180гр. - 68гр. = 112гр.
Угол АСД найти нельзя. для этого нужно знать длину хотя бы одной стороны.