ответ:Треугольник АВС равнобедренный,т к по условию АВ=ВС
Если внешний угол равен 80 градусов,то смежный ему внутренний угол равен
180-80=109 градусов равен <В
Углы при основании равнобедренного треугольника равны между собой,поэтому каждый из углов при основании равен
(180-100):2=40 градусов
Номер 2
Внешний угол треугольника равен 140 градусов,а это означает,что два внутренние не смежные с ним угла в сумме равны градусной мере внешнего не смежного с ними угла
3+4=7
Чему равна 1 часть
140:7=20 градусов
Один угол
20•3=60 градусов
Второй угол
20•4=80 градусов
Третий угол
180-140=40 градусов
Номер 3
Первое-биссектрисы поделили углы А и В на 4 равных угла
Второе-треугольник ADB является равнобедренным,т к углы при основании равны между собой и равны
ответ:Треугольник АВС равнобедренный,т к по условию АВ=ВС
Если внешний угол равен 80 градусов,то смежный ему внутренний угол равен
180-80=109 градусов равен <В
Углы при основании равнобедренного треугольника равны между собой,поэтому каждый из углов при основании равен
(180-100):2=40 градусов
Номер 2
Внешний угол треугольника равен 140 градусов,а это означает,что два внутренние не смежные с ним угла в сумме равны градусной мере внешнего не смежного с ними угла
3+4=7
Чему равна 1 часть
140:7=20 градусов
Один угол
20•3=60 градусов
Второй угол
20•4=80 градусов
Третий угол
180-140=40 градусов
Номер 3
Первое-биссектрисы поделили углы А и В на 4 равных угла
Второе-треугольник ADB является равнобедренным,т к углы при основании равны между собой и равны
(180-100):2=40 градусов
Угол 40 градусов равен половине угла А
<А=40•2=80 градусов
<А=<В=80 градусов
Угол С равен
180-(80+80)=20 градусов
Объяснение:
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.