Геометрия 10 клас 1 рівень ⦁ На рисунку зображено площину α і точки А і В, які належать цій площині. Скільки точок , крім А і В, належать площиніα? а) жодної; б) одна; в) дві; г) безліч.
2)Пряма а перетинає площину у точці М. Скільки точок прямої а лежить у площині ? а) жодної; б) одна; в) безліч; г) дві.
3) Скільки площин можна провести через дві прямі, що перетинаються? а) жодної; б) одну; в) безліч; г) дві.
Площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Пояснення:
Пусть длина торта равна Х = Х1 + Х2, где Х1 - длина левой части ( там где написано "Витя" ), а Х2 - длина правой части ( там где написано "Митя" ).
Пусть ширина торта равна У = У1 + У2, где У1 - ширина верхней части ( там где написано "Витя" ), а У2 - ширина нижней части ( там где написано "Митя" ).
Тогда площадь куска с надписью "Витя" равна S1 = Х1 × У1, а площадь куска с надписью "Митя" равна S2 = Х2 × У2.
Поскольку в прямоугольнике проведена диагональ, то должна выполняться пропорция:
Х / У = Х1 / У2 = Х2 / У1 ( в пропорции индексы 1 и 2 возле Х и У не совпадают, так как мы привязали номера к кускам с именами и взяли номера Х слева на право, а номера У сверху вниз ).
Приведем уравнение для площади куска с надписью "Митя" ( S2 = Х2 × У2 ) к индексам Х1 и У1.
Из пропорции:
Х2 / У1 = Х1 / У2
Получаем:
Х2 = Х1 × У1 / У2
Подставим в уравнение для S2:
S2 = Х2 × У2 = Х1 × У1 × У2 / У2 = Х1 × У1 = S1
В результате мы получили, что площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Т.к. углы САД и АВС равны по условию, а углы ДСА и САВ равны как внутренние накрест лежащие углы при ДС ║АВ, и секущей АС, то треугольники подобны по первому признаку подобия, т.е. по двум углам. А площади подобных треугольников относятся как квадраты сходственных сторон. Поэтому S₁/S₂=8²/12²; S₁- площадь треугольника САД, S₂- площадь треугольника АВС.
S₁/36=64/144; S₁=36*(4/9)=4*4=16- площадь треугольника САД.
Площадь трапеции равна сумме площадей двух треугольников САД и АВС. А именно 36+16=52
Відповідь:
Площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Пояснення:
Пусть длина торта равна Х = Х1 + Х2, где Х1 - длина левой части ( там где написано "Витя" ), а Х2 - длина правой части ( там где написано "Митя" ).
Пусть ширина торта равна У = У1 + У2, где У1 - ширина верхней части ( там где написано "Витя" ), а У2 - ширина нижней части ( там где написано "Митя" ).
Тогда площадь куска с надписью "Витя" равна S1 = Х1 × У1, а площадь куска с надписью "Митя" равна S2 = Х2 × У2.
Поскольку в прямоугольнике проведена диагональ, то должна выполняться пропорция:
Х / У = Х1 / У2 = Х2 / У1 ( в пропорции индексы 1 и 2 возле Х и У не совпадают, так как мы привязали номера к кускам с именами и взяли номера Х слева на право, а номера У сверху вниз ).
Приведем уравнение для площади куска с надписью "Митя" ( S2 = Х2 × У2 ) к индексам Х1 и У1.
Из пропорции:
Х2 / У1 = Х1 / У2
Получаем:
Х2 = Х1 × У1 / У2
Подставим в уравнение для S2:
S2 = Х2 × У2 = Х1 × У1 × У2 / У2 = Х1 × У1 = S1
В результате мы получили, что площадь куска с надписью "Витя" равна площади куска с надписью "Митя".
Т.к. углы САД и АВС равны по условию, а углы ДСА и САВ равны как внутренние накрест лежащие углы при ДС ║АВ, и секущей АС, то треугольники подобны по первому признаку подобия, т.е. по двум углам. А площади подобных треугольников относятся как квадраты сходственных сторон. Поэтому S₁/S₂=8²/12²; S₁- площадь треугольника САД, S₂- площадь треугольника АВС.
S₁/36=64/144; S₁=36*(4/9)=4*4=16- площадь треугольника САД.
Площадь трапеции равна сумме площадей двух треугольников САД и АВС. А именно 36+16=52
ответ 52