Здравствуйте. Решение 1 задачи состоит в знании второго признака подобии треугольников : " Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника " то эти треугольника подобны. В первом треугольника гипотенуза будет равна 5( по теореме Пифагора) . А во втором второй катет будет 8. Как видите все катеты одного треугольника в 2 раза меньше чем у другого треугольника и аналогичная ситуация с гипотенузой. Следовательно, треугольники подобные. Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.
Пусть мы отметили 2 точки А и В, причём точка А стоит левее точки В (это не принципиально, просто надо для однозначности дальнейших рассуждений). Через точки А и В провели прямую (прямую АВ). Начало луча АВ в точке А, луч направлен в сторону точки В. Точка М принадлежит прямой АВ, разместить мы её можем только левее точки А, иначе точка М будет принадлежать лучу АВ, что противоречит условию. Известно, что через точку можну провести только одну прямую параллельную данной прямой. Поэтому через точку М мы можем провести одну прямую МА параллельно прямой АВ (они совпадут), соответственно она будет параллельна и лучу АВ. Но нас просят провести не прямую, а луч. Разница будет в том, что прямую МА можно разбить на два луча. Оба будут начинаться в точке М, только один пойдёт вдоль прямой АВ в сторону точки А, а второй в обратную. Итак, есть 2 искомых луча.
Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.
Точка М принадлежит прямой АВ, разместить мы её можем только левее точки А, иначе точка М будет принадлежать лучу АВ, что противоречит условию.
Известно, что через точку можну провести только одну прямую параллельную данной прямой. Поэтому через точку М мы можем провести одну прямую МА параллельно прямой АВ (они совпадут), соответственно она будет параллельна и лучу АВ. Но нас просят провести не прямую, а луч. Разница будет в том, что прямую МА можно разбить на два луча. Оба будут начинаться в точке М, только один пойдёт вдоль прямой АВ в сторону точки А, а второй в обратную.
Итак, есть 2 искомых луча.