(геодезия)Определить координаты точки В: хВ и уВ., если длина линии АВ sAB = 120м, координаты точки А хА = - 10,5м, уА = - 22,0м. дирекционный угол линии АВ αАВ = 225˚35'
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
"1. На луче с началом в точке А отмечены точки В и С. Известно, что AC = 7, 8см, ВС = 2,5 см. Какую длину может иметь отрезок АВ?
2. Луч BP проходит между сторонами угла ABC. Найдите угол РВС, Если угол ABC равен 83 , угол АВР равна 48
3. Один из двух углов, образованных при пересечении двух прямых, на 22 меньше второго. Найдите все образовавшиеся углы.
4. Один из смежных углов в 4 раза меньше второго. "
1) АВ=АС-ВС.
АВ=7,8-2,5=5,3 см.
2) ∠РВС=∠АВС-∠АВР=83*-48*=35*.
3) Меньший угол обозначим через х. Тогда больший будет х+22*
Эти углы смежные и их сумма равна 180*.
х+х+22*=180*.
2х=158*.
х=79*. - меньший угол.
79*+22*=101* - больший угол.
ответ: При пересечении двух прямых образовалось четыре угла: два смежных 79* и 100* и два накрест лежащих: 79*=79* и 101*=101*.
4) меньший угол обозначим через х. Тогда больший будет 4х. Сумма смежных углов равна 180*.
х+4х=180*.
5х=180*.
х=36* - меньший угол.
Больший угол равен 36*4=144*
ответ: 36* и 144*( 36*+144*=180*)