Первый признак равенства треугольников — по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников — по стороне и двум прилежащим углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников — по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Первый признак равенства треугольников — по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников — по стороне и двум прилежащим углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников — по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
50,56 см
Объяснение:
1) В треугольнике ABD стороны AD и AB являются катетами, а BD - гипотенузой. По теореме Пифагора находим АВ:
АВ^2 = DB^2 - AD^2
АВ^2 = 18^2 - 14^2 = 324 - 196 = 128
АВ = √128 = √64 * 2 = 8√2
2) Периметр прямоугольника равен:
(АВ + AD) * 2 = (14 + 8√2) * 2 = 28 + 16√2 = 4(7+4√2) см.
Тот же ответ можно записать по-другому, с округлением до сотых, т.к. √2 является иррациональным числом.
4(7+4√2) = 4* (7 + 4*1,41) = 4* (7 + 5,64) = 4 * 12,64 = 50,56 см
ответ: 4(7+4√2) см, или (что одно и то же) 50,56 см