от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Площадь прямоугольника-s= a*b докажем, что s = ab.
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
строим прямую
на ней откладываем точку А
от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Соединим точки АВС- это искомый треугольник
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.