Есть равнобедренный треугольник abc,ab=ac.с вершины b опущена высота,она же медиана.допустим ab=a,медиана bh=b.тогда синус угла bhc равен можно найти по следуя теореме пифагора.но как можно найти синус всего угла,зная его половину?
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
24√3 ед²
Объяснение:
Правильный шестиугольник.
Диагонали правильного шестиугольника образуют 6 равносторонних треугольников.
Рассмотрим треугольник ∆ОКL
KM- высота, биссектрисса и медиана треугольника ∆ОКL.
По формуле нахождения высоты равностороннего треугольника
KM=KL√3/2 ед
KM=8√3/2=4√3 ед
Так как ВL=KB, по условию
Применяем теорему Фалеса
КТ=ТМ
ТМ=КМ/2=4√3:2=2√3 ед
Рассмотрим треугольник ∆ОLC
CM- высота, биссектрисса и медиана треугольника ∆ОLC.
Поскольку ∆ОLC=∆OKL, то и высоты их равны КМ=МС=4√3 ед
ТС=ТМ+КМ=2√3+4√3=6√3 ед
ТС- высота ∆АВС опущенная на сторону АС.
S(∆ABC)=1/2*AC*TC=1/2*8*6√3=24√3 ед²
P.S. поскольку еденицы измерения не указаны, то написала ед.- едениц.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.