Как я понял, нужно из трех вариантов выбрать правильный. Критерием того, могут ли три положительных числа быть сторонами треугольника, служит неравенство треугольника: сумма длин двух сторон треугольника должна быть больше третьей стороны. При этом достаточно, проверить, что сумма длин самых маленьких сторон больше третьей стороны.
В первом случае 4+5>7, значит, такой треугольник возможен.
Во втором случае 3+4=7, значит, такой треугольник невозможен (в этом случае треугольник как бы сплющивается в отрезок).
В третьем случае 4+7=11 - ситуация такая же, как и во втором случае.
Площадь выпуклого многоугольника можно посчитать по известной формуле:
S = p•r , где р - это полупериметр , r - радиус вписанной окружности.
Если в четырёхугольник вписана окружность, то сумма её двух противолежащих сторон равна сумме двух других противолежащих сторон.
Боковые стороны в равнобедренной трапеции равны, поэтому сумма противоположных сторон равна: 70 + 70 = 140 см, и ещё + 140 см, получаем периметр трапеции = 280 см, но нам нужен полупериметр, поэтому 280/2 = 140 см
В первом случае 4+5>7, значит, такой треугольник возможен.
Во втором случае 3+4=7, значит, такой треугольник невозможен (в этом случае треугольник как бы сплющивается в отрезок).
В третьем случае 4+7=11 - ситуация такая же, как и во втором случае.
ответ: Третья сторона равна 5 см
Площадь выпуклого многоугольника можно посчитать по известной формуле:
S = p•r , где р - это полупериметр , r - радиус вписанной окружности.
Если в четырёхугольник вписана окружность, то сумма её двух противолежащих сторон равна сумме двух других противолежащих сторон.
Боковые стороны в равнобедренной трапеции равны, поэтому сумма противоположных сторон равна: 70 + 70 = 140 см, и ещё + 140 см, получаем периметр трапеции = 280 см, но нам нужен полупериметр, поэтому 280/2 = 140 см
S = p•r = 140•25 = 35•4•25 = 3 500 см^2
ответ: 3 500 см^2