если не трудно начертите рисунок, а то не пойму какой. Через внешнюю точку Е окружности проведены две прямые, пересекающие окружность соответственно в точках А, С и В, D. Докажите, что треугольники ADЕ и BCЕ подобны.
На рисунке изображена прямоугольная трапеция ABCD, в которую вписан круг. Точка касания окружности делит большую боковую сторону на отрезки длиной 4 см и 25 см. Установите соответствие между началом предложения (1 - 4) и его окончанием (а-д) так, чтобы образовалось правильное утверждение
1 Средняя линия трапеции равна ,2 Высота трапеции равна , 3 радиус вписанной окружности равен , 4 Меньшая диагональ трапеции равна
A )√ 594 см , Б) 20 см, В)2√149 см , Г) 10 см , Д) 24,5 см
Дано:
усеченный конус
r = O₁B = 5 см
R = OA = 11 см
см
-----------------------------
Найти:
Sсеч - ?
1) Проведем BH⊥AO.
OH = O₁B = r = 5 см
AH = OA - OH = R - r = 11 см - 5 см = 6 см
2) Рассмотрим ΔAHB:
BH⊥AO | ⇒ ΔAHB - прямоугольный
∠AHB = 90° |
AB² = AH² + HB² - по теореме Пифагора, следовательно:h = BH = OO₁ = 8 см
3) Равнобедренная трапеция ABCD является осевым сечением данного усеченного конуса:
4) В трапеции ABCD:
AD = 2AO = 2R = 2×11 см = 22 см h = BH= 8 см
BC = 2BO₁ = 2r = 2×5 см = 10 см
5) Тогда площадь трапеции равна:
⇒
Sсеч = = 128 см²
ответ: Sсеч = 128 см²
P.S. Рисунок показан внизу↓
На рисунке изображена прямоугольная трапеция ABCD, в которую вписан круг. Точка касания окружности делит большую боковую сторону на отрезки длиной 4 см и 25 см. Установите соответствие между началом предложения (1 - 4) и его окончанием (а-д) так, чтобы образовалось правильное утверждение
1 Средняя линия трапеции равна ,2 Высота трапеции равна , 3 радиус вписанной окружности равен , 4 Меньшая диагональ трапеции равна
A )√ 594 см , Б) 20 см, В)2√149 см , Г) 10 см , Д) 24,5 см
Объяснение:
1) Найдем радиус вписанной окружности r=√(CH*HD)=√(4*25)10 (cм)⇒
диаметр ,равный высоте трапеции , равен 2*10=20( см), h=20 cм.
2)Высота прямоугольной трапеции равна меньшей боковой стороне ⇒ АВ=20 см.
3)Суммы противоположных сторон любого четырёхугольника описанного около окружности равны : АВ+CD=BC+AD ⇒BC+AD=20+29=49 (см)
По определению средней линии трапеции имеем = =24,5(см)
4) Меньшей диагональю будет АС.
По свойству отрезков касательных СН=СК=4 см, ВМ=ВК=10 см, тогда ВС=4+10=14 (см)
ΔАВС-прямоугольный по т. Пифагора АС=√(14²+20²)=√596=√(4*149)=2√149 ( см).
ответ . 1-Д ; 2-Б ; 3-Г ; 4-В .