1. По т. косинусов из треуг. ВСД: ВД²=ВС²+CD²-2*BC*CD*cos150=4+12+8√3*sin60=16+8√3*√3/2=28 Сумма углов трапеции, прилежащих боковой стороне равна 180, значит угол Д=180-150=30. В прямоуг. треуг. против угла 30 градусов лежит катет в половину меньший гипотенузы, значит СР=√3. по т. Пифагора из треуг. СДР: ДР=√(12-3)=√9=3 КД=ВС+ДР=2+3=5 АВ перпендик. ВД, значит треуг. АВД - прямоугольный, а ВК - высота з прямого угла. Катет есть среднее пропорциональное между гипотенузой и его пр оекцией на гипотенузу. ВД²=АД*КД=АД*5 28=АД*5 АД=28/5=5,6
2. По теореме косинусов АВ²=ВС²+АС²-2*ВС*АС*cos135 25=18+AC²+6√2*AC*sin45 AC²+6AC-7=0 По т. Виета AC1=-7 - отрицательное значение не может быть АС2=1
Сделаем рисунок. Вокруг любого треугольника можно описать окружность. Рассмотрим треугольник ВНД. Он прямоугольный по условию, следовательно, вокруг него можно описать окружность с центром в точке О радиусом, равным ВО=ОД - половине его гипотенузы - по свойству прямоугольного треугольника. Т.к. диагонали любого прямоугольника равны и точкой пересечения делятся пополам, а О - центр окружности, то АС - также диаметр этой окружности. Угол АНС опирается на АС - диаметр окружности. Следовательно, он равен 90 градусам.
ВД²=ВС²+CD²-2*BC*CD*cos150=4+12+8√3*sin60=16+8√3*√3/2=28
Сумма углов трапеции, прилежащих боковой стороне равна 180, значит угол Д=180-150=30. В прямоуг. треуг. против угла 30 градусов лежит катет в половину меньший гипотенузы, значит СР=√3.
по т. Пифагора из треуг. СДР: ДР=√(12-3)=√9=3
КД=ВС+ДР=2+3=5
АВ перпендик. ВД, значит треуг. АВД - прямоугольный, а ВК - высота з прямого угла.
Катет есть среднее пропорциональное между гипотенузой и его пр оекцией на гипотенузу.
ВД²=АД*КД=АД*5
28=АД*5
АД=28/5=5,6
2. По теореме косинусов
АВ²=ВС²+АС²-2*ВС*АС*cos135
25=18+AC²+6√2*AC*sin45
AC²+6AC-7=0
По т. Виета AC1=-7 - отрицательное значение не может быть
АС2=1
Вокруг любого треугольника можно описать окружность.
Рассмотрим треугольник ВНД.
Он прямоугольный по условию, следовательно, вокруг него можно описать окружность с центром в точке О радиусом, равным ВО=ОД - половине его гипотенузы - по свойству прямоугольного треугольника.
Т.к. диагонали любого прямоугольника равны и точкой пересечения делятся пополам, а О - центр окружности, то АС - также диаметр этой окружности.
Угол АНС опирается на АС - диаметр окружности.
Следовательно, он равен 90 градусам.