∠CBD = ∠ADB = 90° - как накрест лежащие. ∠ABD = ∠B - ∠CBD = 120° - 90° = 30°. Тогда AD = 1/2AB => AB = 2AD = 24 см. По теореме Пифагора: BD = √AB² - AD² = √24² - 12² = √576 - 144 = √432 = 12√3 см.
OC = OA, BO = OD, т.к. диагонали точкой пересечения делятся пополам. BO = 6√3 см. AD = BC = 12 см, т.к. противоположные стороныр параллелограмма равны. По теореме Пифагора: CO = √CB² + BO² = √144 + 108 = √252 = 6√7 см. CA = 2CO = 12√7 см.
∠ABD = ∠B - ∠CBD = 120° - 90° = 30°. Тогда AD = 1/2AB => AB = 2AD = 24 см.
По теореме Пифагора:
BD = √AB² - AD² = √24² - 12² = √576 - 144 = √432 = 12√3 см.
OC = OA, BO = OD, т.к. диагонали точкой пересечения делятся пополам. BO = 6√3 см.
AD = BC = 12 см, т.к. противоположные стороныр параллелограмма равны.
По теореме Пифагора:
CO = √CB² + BO² = √144 + 108 = √252 = 6√7 см.
CA = 2CO = 12√7 см.
SCOD = 1/2CB•OD = 1/2•12см•6√3см = 36√2 см².
Оьвет: 12√3 см, 12√7 см, 36√3 см².
а)Дано:
гипотенуза=29
меньший катет=20
больший-?
прямоугольный угол=90 градусов
Найти:
больший катет-?
2 острых угла-?
Решение:
1)По теореме Пифагора:
(29)^2=(20)^2+(x)^2
x^2=(29-20)(29+20)
x=_/49*9=3*7=21
2)По теореме sin(синусов):
(29/sin90):(20/sinx)
sin90=1
20*1=sinx*29
sinx=20/29
sinx=0,6819
x=43 градусам
Значит другой острый угол =180-(90+43)=47 градусов
б)Дано:
1 катет=7 см
2 катет=5 см
прямой угол=90 градусов
Найти:
гипотенузу-?
2 острых угла-?
Решение:
1)По теореме Пифагора:
(5)^2+(7)^2=(x)^2
25+49=x^2
x^2=74
x=_/74
x=_/27*2
x=3_/2
2)sinа=(противолежащего):гипотенузе=5:3_/2=(5_/2)/6=1,4
sin b=(прилежащего катета):гипотенузе=7:3_/2=(7_/2)/6=sina=2,6