Пусть АВСА! В1С1 данная призма. В основании прямоугольный тр-к, пусть угол АСВ =90 и этот тр-к вписан в круг - основание цилиндра. 1) Из тр-ка АСВ находим АВ = АС/cos30 = 4а /√3 = 4а√3/3 2) . В прямоугольном тр-ке центр описанной окружности лежит на середине гипотенузы, поэтому R( основания цилиндра )= 0,5 АВ = 0,5*(4а√3/3) = 2а√3/3 3) большей боковой грани призмы является грань, содержащая гипотенуэу. то ксть АВВ1А1 и тогда угол АВА1 =45 градусов, а угол А1АВ =90, значит угол АА1В =45 и тогда АА1 =АВ = 4а√3/3 это и есть высота цилиндра 4) V (цилиндра) = πR²Н = π (2а√3/3)² *(4а√3/3 ) = 16√3πа³ / 9
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80
Пусть АВСА! В1С1 данная призма. В основании прямоугольный тр-к, пусть угол АСВ =90 и этот тр-к вписан в круг - основание цилиндра. 1) Из тр-ка АСВ находим АВ = АС/cos30 = 4а /√3 = 4а√3/3 2) . В прямоугольном тр-ке центр описанной окружности лежит на середине гипотенузы, поэтому R( основания цилиндра )= 0,5 АВ = 0,5*(4а√3/3) = 2а√3/3 3) большей боковой грани призмы является грань, содержащая гипотенуэу. то ксть АВВ1А1 и тогда угол АВА1 =45 градусов, а угол А1АВ =90, значит угол АА1В =45 и тогда АА1 =АВ = 4а√3/3 это и есть высота цилиндра 4) V (цилиндра) = πR²Н = π (2а√3/3)² *(4а√3/3 ) = 16√3πа³ / 9